コード例 #1
0
def gen_items(space, covariate):
    # Create an item bank to store the items.
    # Setting the property "sizeHint" increases allocation efficiency
    bank = gobject.new(oscats.ItemBank, sizeHint=N_ITEMS)
    # Create the items
    for i in range(N_ITEMS):
        # First we create an IRT model container for our item
        # We have to specify which dimensions to be used with the "dims" array
        # (in this case, we use both of the dimensions of the space)
        model = gobject.new(oscats.ModelL2p,
                            space=space,
                            dims=dims,
                            covariates=covariate)
        # Then, set the parameters.  Here there are 4:
        # Discrimination on two dimensions, difficulty, and covariate coef.
        model.set_param_by_name("Diff", oscats.oscats_rnd_normal(sqrt(3)))
        model.set_param_by_name("Discr.Cont.1",
                                oscats.oscats_rnd_uniform_range(0, 1))
        model.set_param_by_name("Discr.Cont.2",
                                oscats.oscats_rnd_uniform_range(0, 2))
        model.set_param_by_name(COVARIATE_NAME,
                                oscats.oscats_rnd_uniform_range(0.5, 1.5))
        # Create an item based on this model
        item = gobject.new(oscats.Item)
        item.set_model(item.get_default_model(), model)
        # Add the item to the item bank
        bank.add_item(item)
        # Since Python is garbage collected, we don't have to worry about
        # reference counting.
    return bank
コード例 #2
0
ファイル: ex02.py プロジェクト: WilliamXIII/oscats
def gen_items(space, covariate) :
  # Create an item bank to store the items.
  # Setting the property "sizeHint" increases allocation efficiency
  bank = gobject.new(oscats.ItemBank, sizeHint=N_ITEMS)
  # Create the items
  for i in range(N_ITEMS) :
    # First we create an IRT model container for our item
    # We have to specify which dimensions to be used with the "dims" array
    # (in this case, we use both of the dimensions of the space)
    model = gobject.new(oscats.ModelL2p, space=space, dims=dims, covariates=covariate)
    # Then, set the parameters.  Here there are 4:
    # Discrimination on two dimensions, difficulty, and covariate coef.
    model.set_param_by_name("Diff", oscats.oscats_rnd_normal(sqrt(3)))
    model.set_param_by_name("Discr.Cont.1",
                            oscats.oscats_rnd_uniform_range(0, 1))
    model.set_param_by_name("Discr.Cont.2",
                            oscats.oscats_rnd_uniform_range(0, 2))
    model.set_param_by_name(COVARIATE_NAME,
                            oscats.oscats_rnd_uniform_range(0.5, 1.5))
    # Create an item based on this model
    item = gobject.new(oscats.Item)
    item.set_model(item.get_default_model(), model)
    # Add the item to the item bank
    bank.add_item(item)
    # Since Python is garbage collected, we don't have to worry about
    # reference counting.
  return bank
コード例 #3
0
def gen_examinees(space):
    dim = space.get_dim_by_name("Cont.1")
    ret = []
    for i in range(N_EXAMINEES):
        theta = oscats.Point(space=space)
        theta.set_cont(dim, oscats.oscats_rnd_normal(1))
        e = oscats.Examinee()
        e.set_sim_theta(theta)
        ret.append(e)
    return ret
コード例 #4
0
ファイル: ex04.py プロジェクト: laiello/oscats
def gen_examinees(space):
    dim = space.get_dim_by_name("Cont.1")
    ret = []
    for i in range(N_EXAMINEES):
        theta = oscats.Point(space=space)
        theta.set_cont(dim, oscats.oscats_rnd_normal(1))
        e = oscats.Examinee()
        e.set_sim_theta(theta)
        ret.append(e)
    return ret
コード例 #5
0
ファイル: ex01.py プロジェクト: WilliamXIII/oscats
def gen_examinees(space) :
  dim = space.get_dim_by_name("Cont.1")
  ret = []
  for i in range(N_EXAMINEES) :
    # Latent IRT ability parameter.  This is a one-dimensional test.
    theta = oscats.Point(space=space)
    # Sample the ability from N(0,1) distribution
    theta.set_cont(dim, oscats.oscats_rnd_normal(1))
    # Create a new examinee
    e = gobject.new(oscats.Examinee)
    # Set the examinee's true (simulated) ability
    e.set_sim_theta(theta)
    ret.append(e)
  return ret
コード例 #6
0
def gen_examinees(space):
    dim = space.get_dim_by_name("Cont.1")
    ret = []
    for i in range(N_EXAMINEES):
        # Latent IRT ability parameter.  This is a one-dimensional test.
        theta = oscats.Point(space=space)
        # Sample the ability from N(0,1) distribution
        theta.set_cont(dim, oscats.oscats_rnd_normal(1))
        # Create a new examinee
        e = gobject.new(oscats.Examinee)
        # Set the examinee's true (simulated) ability
        e.set_sim_theta(theta)
        ret.append(e)
    return ret
コード例 #7
0
ファイル: ex01.py プロジェクト: WilliamXIII/oscats
def gen_items(space) :
  # Create an item bank to store the items.
  # Setting the property "sizeHint" increases allocation efficiency
  bank = gobject.new(oscats.ItemBank, sizeHint=N_ITEMS)
  for i in range(N_ITEMS) :
    # First we create an IRT model container for our item
    # Defaults to unidimensional, using the first dimension of space
    model = gobject.new(oscats.ModelL1p, space=space)
    # Then, set the parameters.  Here there is only one, the difficulty (b).
    model.set_param_by_index(0, oscats.oscats_rnd_normal(1))
    # Create an item based on this model
    item = gobject.new(oscats.Item)
    item.set_model(item.get_default_model(), model)
    # Add the item to the item bank
    bank.add_item(item)
    # Since Python is garbage collected, we don't have to worry about
    # reference counting.
  return bank
コード例 #8
0
def gen_items(space):
    # Create an item bank to store the items.
    # Setting the property "sizeHint" increases allocation efficiency
    bank = gobject.new(oscats.ItemBank, sizeHint=N_ITEMS)
    for i in range(N_ITEMS):
        # First we create an IRT model container for our item
        # Defaults to unidimensional, using the first dimension of space
        model = gobject.new(oscats.ModelL1p, space=space)
        # Then, set the parameters.  Here there is only one, the difficulty (b).
        model.set_param_by_index(0, oscats.oscats_rnd_normal(1))
        # Create an item based on this model
        item = gobject.new(oscats.Item)
        item.set_model(item.get_default_model(), model)
        # Add the item to the item bank
        bank.add_item(item)
        # Since Python is garbage collected, we don't have to worry about
        # reference counting.
    return bank
コード例 #9
0
ファイル: ex03.py プロジェクト: WilliamXIII/oscats
          "\t".join([ "%s.theta\t%s.alpha" for name in test_names]) + "\n")
for e in examinees :
  tmp = e.get_theta_by_name("trueTheta")
  dim = contSpace.get_dim_by_name("Cont.1")
  out.write("%s\t%g\t" % (e.get_property("id"), tmp.get_cont(dim)))
  tmp = e.get_theta_by_name("trueAlpha")
  dim = binSpace.get_dim_by_name("Bin.1")
  for k in range(N_ATTR) :
    if tmp.get_bin(dim) : out.write("1")
    else                : out.write("0")
    dim += 1
  
  # Choose initial theta and alpha for this examinee
  # We'll use the same initial abilities for all four tests
  dim = contSpace.get_dim_by_name("Cont.1")
  initTheta.set_cont(dim, oscats.oscats_rnd_normal(sqrt(0.05))-0.37)
  dim = binSpace.get_dim_by_name("Bin.1")
  for k in range(N_ATTR) :
    initAlpha.set_bin(dim, oscats.oscats_rnd_uniform() < 0.5) ; dim += 1
  
  # Initialize ability estimates for this examinee
  e.set_theta_by_name("estTheta", oscats.Point(space=contSpace))
  e.set_theta_by_name("estAlpha", oscats.Point(space=binSpace))

  for test in tests :
    # Reset initial latent ability for this test
    e.get_theta_by_name("estTheta").copy(initTheta)
    e.get_theta_by_name("estAlpha").copy(initAlpha)
    
    # Do the administration!
    test.administer(e)
コード例 #10
0
ファイル: ex02.py プロジェクト: WilliamXIII/oscats
# Here, we'll just use one object over again for each administration.
e = oscats.Examinee(covariates=covariate)
sim_theta = oscats.Point(space=space)
est_theta = oscats.Point(space=space)
e.set_sim_theta(sim_theta)
e.set_est_theta(est_theta)

print "Administering."
for I in range(len(grid)) :
  sim_theta.set_cont(dims[0], grid[I])
  for J in range(len(grid)) :
    stdout.write("\rAt grid point (%g, %g) ...\n" % (grid[I], grid[J]))
    sim_theta.set_cont(dims[1], grid[J])
    for i in range(N_EXAMINEES) :
      # "covariate" is the same OscatsCovariates object used by "e"
      covariate.set_by_name(COVARIATE_NAME, oscats.oscats_rnd_normal(1))
      stdout.write("\r%d" % i) ; stdout.flush()
      for j in range(len(tests)) :
        # Reset initial theta: Random start ~ N_2(0, I_2)
        est_theta.set_cont(dims[0], oscats.oscats_rnd_normal(1))
        est_theta.set_cont(dims[1], oscats.oscats_rnd_normal(1))
        # Administer the test
        tests[j].administer(e)
        # Calculate error (Euclidean distance between sim/est theta)
        err_sums[j][I*len(grid)+J] += distance(sim_theta, est_theta);
    
# Report results
out = open("ex02-results.txt", "w")
out.write("D1\tD2\t" + "\t".join(test_names) + "\n")
for I in range(len(grid)) :
  for J in range(len(grid)) :
コード例 #11
0
# Here, we'll just use one object over again for each administration.
e = oscats.Examinee(covariates=covariate)
sim_theta = oscats.Point(space=space)
est_theta = oscats.Point(space=space)
e.set_sim_theta(sim_theta)
e.set_est_theta(est_theta)

print "Administering."
for I in range(len(grid)):
    sim_theta.set_cont(dims[0], grid[I])
    for J in range(len(grid)):
        stdout.write("\rAt grid point (%g, %g) ...\n" % (grid[I], grid[J]))
        sim_theta.set_cont(dims[1], grid[J])
        for i in range(N_EXAMINEES):
            # "covariate" is the same OscatsCovariates object used by "e"
            covariate.set_by_name(COVARIATE_NAME, oscats.oscats_rnd_normal(1))
            stdout.write("\r%d" % i)
            stdout.flush()
            for j in range(len(tests)):
                # Reset initial theta: Random start ~ N_2(0, I_2)
                est_theta.set_cont(dims[0], oscats.oscats_rnd_normal(1))
                est_theta.set_cont(dims[1], oscats.oscats_rnd_normal(1))
                # Administer the test
                tests[j].administer(e)
                # Calculate error (Euclidean distance between sim/est theta)
                err_sums[j][I * len(grid) + J] += distance(
                    sim_theta, est_theta)

# Report results
out = open("ex02-results.txt", "w")
out.write("D1\tD2\t" + "\t".join(test_names) + "\n")
コード例 #12
0
          "\t".join(["%s.theta\t%s.alpha" for name in test_names]) + "\n")
for e in examinees:
    tmp = e.get_theta_by_name("trueTheta")
    dim = contSpace.get_dim_by_name("Cont.1")
    out.write("%s\t%g\t" % (e.get_property("id"), tmp.get_cont(dim)))
    tmp = e.get_theta_by_name("trueAlpha")
    dim = binSpace.get_dim_by_name("Bin.1")
    for k in range(N_ATTR):
        if tmp.get_bin(dim): out.write("1")
        else: out.write("0")
        dim += 1

    # Choose initial theta and alpha for this examinee
    # We'll use the same initial abilities for all four tests
    dim = contSpace.get_dim_by_name("Cont.1")
    initTheta.set_cont(dim, oscats.oscats_rnd_normal(sqrt(0.05)) - 0.37)
    dim = binSpace.get_dim_by_name("Bin.1")
    for k in range(N_ATTR):
        initAlpha.set_bin(dim,
                          oscats.oscats_rnd_uniform() < 0.5)
        dim += 1

    # Initialize ability estimates for this examinee
    e.set_theta_by_name("estTheta", oscats.Point(space=contSpace))
    e.set_theta_by_name("estAlpha", oscats.Point(space=binSpace))

    for test in tests:
        # Reset initial latent ability for this test
        e.get_theta_by_name("estTheta").copy(initTheta)
        e.get_theta_by_name("estAlpha").copy(initAlpha)