コード例 #1
0
def polygonize_pmap(pmap_ds: gdal.Dataset,
                    pmap_threshold=131,
                    layer_name='unknown.gpkg',
                    path_out=None) -> gdal.Dataset:
    pmap_bin_img = (pmap_ds.ReadAsArray() > pmap_threshold).astype(np.uint8)
    pmap_bin_ds = add_ref_to_img(pmap_bin_img, pmap_ds)
    #
    srs = osr.SpatialReference()
    srs.ImportFromWkt(pmap_ds.GetProjectionRef())
    #
    if path_out is None:
        ds_out = ogr.GetDriverByName('MEMORY').CreateDataSource('wrk')
        # ds_out = ogr.GetDriverByName('ESRI Shapefile').CreateDataSource(f'/vsimem/{layer_name}.shp')
    else:
        drv = ogr.GetDriverByName('GPKG')
        if os.path.isfile(path_out):
            drv.DeleteDataSource(path_out)
        ds_out = drv.CreateDataSource(path_out)
        layer_name = os.path.splitext(os.path.basename(path_out))[0]
    ds_layer = ds_out.CreateLayer(layer_name,
                                  geom_type=ogr.wkbPolygon,
                                  srs=srs)
    fd = ogr.FieldDefn('DN', ogr.OFTInteger)
    ds_layer.CreateField(fd)
    dst_field = 0
    # path_pmap = '/home/ar/data/uiip/quarry_data_test/s2_u8_t3_msk.tif'
    ds_band = pmap_bin_ds.GetRasterBand(1)
    gdal.Polygonize(ds_band,
                    ds_band,
                    ds_layer,
                    dst_field, [],
                    callback=gdal.TermProgress)
    return ds_out
コード例 #2
0
ファイル: loader.py プロジェクト: xyt556/remote-sensing-1
    def load_from_dataset(self, image_dataset: gdal.Dataset) -> Image:

        geo_transform = self._load_geotransform(image_dataset)
        projection = image_dataset.GetProjection()
        pixels = image_dataset.ReadAsArray()

        if pixels.ndim > 2:
            pixels = pixels.transpose(1, 2, 0)

        return Image(pixels, geo_transform, projection)
コード例 #3
0
ファイル: loader.py プロジェクト: xyt556/remote-sensing-1
    def load_from_dataset_and_clip(self, image_dataset: gdal.Dataset,
                                   extent: GeoPolygon) -> Image:

        geo_transform = self._load_geotransform(image_dataset)
        pixel_polygon = extent.to_pixel(geo_transform)

        bounds = [int(bound) for bound in pixel_polygon.polygon.bounds]

        pixels = image_dataset.ReadAsArray(bounds[0], bounds[1],
                                           bounds[2] - bounds[0],
                                           bounds[3] - bounds[1])
        subset_geo_transform = geo_transform.subset(x=bounds[0], y=bounds[1])
        pixel_polygon = extent.to_pixel(subset_geo_transform)

        if pixels.ndim > 2:
            pixels = pixels.transpose(1, 2, 0)

        return Image(pixels, subset_geo_transform, image_dataset.GetProjection())\
            .clip_with(pixel_polygon, mask_value=0)
コード例 #4
0
ファイル: gdal_to_json.py プロジェクト: talos-gis/gdalos
def gdal_to_json(ds: gdal.Dataset):
    gt = ds.GetGeoTransform(can_return_null=True)
    xsize = ds.RasterXSize
    ysize = ds.RasterYSize
    srs = get_srs(ds)
    srs = srs.ExportToProj4()
    minx = gt[0] + gt[1] * 0 + gt[2] * 0
    miny = gt[3] + gt[4] * 0 + gt[5] * 0
    maxx = gt[0] + gt[1] * xsize + gt[2] * ysize
    maxy = gt[3] + gt[4] * xsize + gt[5] * ysize
    bbox = miny, minx, maxy, maxx
    band_list = range(1, ds.RasterCount + 1)
    data = [
        ds.ReadAsArray(band_list=[bnd]).ravel().tolist() for bnd in band_list
    ]
    ndv = [ds.GetRasterBand(i).GetNoDataValue() for i in band_list]
    result = dict(bbox=bbox,
                  gt=gt,
                  srs=srs,
                  size=(xsize, ysize),
                  data=data,
                  ndv=ndv)
    return result