コード例 #1
0
def simple_get_roads(city):
    """
    Use osmnx to get a simplified version of open street maps for the city
    Writes osm_nodes and osm_ways shapefiles to MAP_FP
    Args:
        city
    Returns:
        None, but creates the following shape files:
           osm_ways.shp - the simplified road network
           osm_nodes.shp - the intersections and dead ends
        And creates the following directory:
           all_nodes - containing edges and nodes directories
               for the unsimplified road network
    """

    G1 = ox.graph_from_place(city, network_type='drive', simplify=False)
    G = ox.simplify_graph(G1)

    # Label endpoints
    streets_per_node = ox.count_streets_per_node(G)
    for node, count in list(streets_per_node.items()):
        if count <= 1:
            G.nodes()[node]['dead_end'] = True

    # osmnx creates a directory for the nodes and edges
    # Store all nodes, since they can be other features
    ox.save_graph_shapefile(G1, filename='all_nodes', folder=MAP_FP)

    # Store simplified network
    ox.save_graph_shapefile(G, filename='temp', folder=MAP_FP)

    # Copy and remove temp directory
    tempdir = os.path.join(MAP_FP, 'temp')
    for filename in os.listdir(os.path.join(tempdir, 'edges')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'edges', filename),
                    os.path.join(MAP_FP, 'osm_ways.' + extension))
    for filename in os.listdir(os.path.join(tempdir, 'nodes')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'nodes', filename),
                    os.path.join(MAP_FP, 'osm_nodes.' + extension))
    shutil.rmtree(tempdir)
コード例 #2
0
def clean_intersections(G, tolerance=15, dead_ends=False):
    """
    Clean-up intersections comprising clusters of nodes by merging them and
    returning their centroids.

    Divided roads are represented by separate centerline edges. The intersection
    of two divided roads thus creates 4 nodes, representing where each edge
    intersects a perpendicular edge. These 4 nodes represent a single
    intersection in the real world. This function cleans them up by buffering
    their points to an arbitrary distance, merging overlapping buffers, and
    taking their centroid. For best results, the tolerance argument should be
    adjusted to approximately match street design standards in the specific
    street network.

    Parameters
    ----------
    G : networkx multidigraph
    tolerance : float
        nodes within this distance (in graph's geometry's units) will be
        dissolved into a single intersection
    dead_ends : bool
        if False, discard dead-end nodes to return only street-intersection
        points

    Returns
    ----------
    G : modified and cleaned networkx multidigraph
    """

    if not dead_ends:
        if 'streets_per_node' in G.graph:
            streets_per_node = G.graph['streets_per_node']
        else:
            streets_per_node = ox.count_streets_per_node(G)

        dead_end_nodes = [
            node for node, count in streets_per_node.items() if count <= 1
        ]
        # G = G.copy()
        G.remove_nodes_from(dead_end_nodes)
    return G
コード例 #3
0
def get_dead_end_nodes(network):
    """
    Get nodes representing dead ends in the street network.

    These are not necessarily nodes with degree of 1, in the undirected representation of the street network,

    Parameters
    ----------
    network : nx.MultiDiGraph
        A street network

    Returns
    -------
    network : nx.MultiDiGraph
        The same network, but without dead end nodes and edges
    """
    if not 'streets_per_node' in network.graph:
        network.graph['streets_per_node'] = ox.count_streets_per_node(network)

    streets_per_node = network.graph['streets_per_node']

    return [node for node, count in streets_per_node.items() if count <= 1]
コード例 #4
0
def simple_get_roads(config):
    """
    Use osmnx to get a simplified version of open street maps for the city
    Writes osm_nodes and osm_ways shapefiles to MAP_FP
    Args:
        city
    Returns:
        None, but creates the following shape files:
           osm_ways.shp - the simplified road network
           osm_nodes.shp - the intersections and dead ends
        And creates the following directory:
           all_nodes - containing edges and nodes directories
               for the unsimplified road network
    """

    # confirm if a polygon is available for this city, which determines which
    # graph function is appropriate
    print("searching nominatim for " + str(config['city']) + " polygon")
    polygon_pos = find_osm_polygon(config['city'])

    if (polygon_pos is not None):
        print("city polygon found in OpenStreetMaps at position " +
              str(polygon_pos) + ", building graph of roads within " +
              "specified bounds")
        G1 = ox.graph_from_place(config['city'],
                                 network_type='drive',
                                 simplify=False,
                                 which_result=polygon_pos)

    else:
        # City & lat+lng+radius required from config to graph from point
        if ('city' not in list(config.keys()) or config['city'] is None):
            sys.exit('city is required in config file')

        if ('city_latitude' not in list(config.keys())
                or config['city_latitude'] is None):
            sys.exit('city_latitude is required in config file')

        if ('city_longitude' not in list(config.keys())
                or config['city_longitude'] is None):
            sys.exit('city_longitude is required in config file')

        if ('city_radius' not in list(config.keys())
                or config['city_radius'] is None):
            sys.exit('city_radius is required in config file')

        print("no city polygon found in OpenStreetMaps, building graph of " +
              "roads within " + str(config['city_radius']) + "km of city " +
              str(config['city_latitude']) + " / " +
              str(config['city_longitude']))
        G1 = ox.graph_from_point(
            (config['city_latitude'], config['city_longitude']),
            distance=config['city_radius'] * 1000,
            network_type='drive',
            simplify=False)

    G = ox.simplify_graph(G1)

    # Label endpoints
    streets_per_node = ox.count_streets_per_node(G)
    for node, count in list(streets_per_node.items()):
        if count <= 1:
            G.nodes()[node]['dead_end'] = True

    # osmnx creates a directory for the nodes and edges
    # Store all nodes, since they can be other features
    ox.save_graph_shapefile(G1, filename='all_nodes', folder=MAP_FP)

    # Store simplified network
    ox.save_graph_shapefile(G, filename='temp', folder=MAP_FP)

    # Copy and remove temp directory
    tempdir = os.path.join(MAP_FP, 'temp')
    for filename in os.listdir(os.path.join(tempdir, 'edges')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'edges', filename),
                    os.path.join(MAP_FP, 'osm_ways.' + extension))
    for filename in os.listdir(os.path.join(tempdir, 'nodes')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'nodes', filename),
                    os.path.join(MAP_FP, 'osm_nodes.' + extension))
    shutil.rmtree(tempdir)
コード例 #5
0
ファイル: streets.py プロジェクト: ysfdanguir/myapp
ville = [
    'Province de Sidi Slimane إقليم سيدي سليمان',
    ' Province de Midelt إقليم ميدلت', 'Berrechid Province',
    'Province de Sidi Bennour إقليم سيدي بنور', 'Rhamna Province',
    'Province de Fquih Ben Saleh إقليم الفقيه بن صالح',
    ' Province de Youssoufia إقليم اليوسفية',
    ' Province de Tinghir إقليم تنغير', 'Sidi Ifni Province',
    'Tarfaya Province'
]
ox.config(log_console=True, use_cache=True)
# download the street network for Rabat,Maroc
street_count = []
for vil in ville:
    a = 0
    print(vil)
    G = ox.graph_from_place(vil + ',Maroc', network_type='all_private')
    street = ox.count_streets_per_node(G, nodes=None)
    for v in street.values():
        a = v + a

    street_count.append([vil, a])
    print(
        "#################################################################################################################"
    )
    print(a)
    print(street_count)
    print(
        "#################################################################################################################"
    )
コード例 #6
0
def simple_get_roads(config, mapfp):
    """
    Use osmnx to get a simplified version of open street maps for the city
    Writes osm_nodes and osm_ways shapefiles to mapfp
    Args:
        config object
    Returns:
        None
        This function creates the following files
           features.geojson - traffic signals, crosswalks and intersections
           osm_ways.shp - the simplified road network
           osm_nodes.shp - the intersections and dead ends
    """

    ox.settings.useful_tags_path.append('cycleway')
    G1 = get_graph(config)
    G = ox.simplify_graph(G1)

    # Label endpoints
    streets_per_node = ox.count_streets_per_node(G)
    for node, count in list(streets_per_node.items()):
        if count <= 1:
            G.nodes()[node]['dead_end'] = True
            G1.nodes()[node]['dead_end'] = True

    # osmnx creates a directory for the nodes and edges
    # Store all nodes, since they can be other features

    # Get relevant node features out of the unsimplified graph
    nodes, data = zip(*G1.nodes(data=True))
    gdf_nodes = geopandas.GeoDataFrame(list(data), index=nodes)
    node_feats = gdf_nodes[gdf_nodes['highway'].isin(
        ['crossing', 'traffic_signals'])]
    intersections = gdf_nodes[gdf_nodes['dead_end'] == True]

    names = {'traffic_signals': 'signal', 'crossing': 'crosswalk'}
    features = []
    for _, row in node_feats.iterrows():
        features.append(
            geojson.Feature(
                geometry=geojson.Point((row['x'], row['y'])),
                id=row['osmid'],
                properties={'feature': names[row['highway']]},
            ))
    for _, row in intersections.iterrows():
        features.append(
            geojson.Feature(
                geometry=geojson.Point((row['x'], row['y'])),
                id=row['osmid'],
                properties={'feature': 'intersection'},
            ))

    features = geojson.FeatureCollection(features)

    with open(os.path.join(mapfp, 'features.geojson'), "w") as f:
        json.dump(features, f)

    # Store simplified network
    ox.save_graph_shapefile(G, filename='temp', folder=mapfp)

    # Copy and remove temp directory
    tempdir = os.path.join(mapfp, 'temp')
    for filename in os.listdir(os.path.join(tempdir, 'edges')):
        _, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'edges', filename),
                    os.path.join(mapfp, 'osm_ways.' + extension))
    for filename in os.listdir(os.path.join(tempdir, 'nodes')):
        _, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'nodes', filename),
                    os.path.join(mapfp, 'osm_nodes.' + extension))
    shutil.rmtree(tempdir)
コード例 #7
0
def graph_from_jsons(response_jsons,
                     network_type='all_private',
                     simplify=True,
                     retain_all=False,
                     truncate_by_edge=False,
                     name='unnamed',
                     timeout=180,
                     memory=None,
                     max_query_area_size=50 * 1000 * 50 * 1000,
                     clean_periphery=True,
                     infrastructure='way["highway"]'):
    """
    Create a networkx graph from OSM data within the spatial boundaries of the passed-in shapely polygon.
    This is a modified routine from osmnx
    Parameters
    ----------
    response_jsons : list of responses from osmnx
        the shape to get network data within. coordinates should be in units of
        latitude-longitude degrees.
    network_type : string
        what type of street network to get
    simplify : bool
        if true, simplify the graph topology
    retain_all : bool
        if True, return the entire graph even if it is not connected
    truncate_by_edge : bool
        if True retain node if it's outside bbox but at least one of node's
        neighbors are within bbox
    name : string
        the name of the graph
    timeout : int
        the timeout interval for requests and to pass to API
    memory : int
        server memory allocation size for the query, in bytes. If none, server
        will use its default allocation size
    max_query_area_size : float
        max size for any part of the geometry, in square degrees: any polygon
        bigger will get divided up for multiple queries to API
    clean_periphery : bool
        if True (and simplify=True), buffer 0.5km to get a graph larger than
        requested, then simplify, then truncate it to requested spatial extent
    infrastructure : string
        download infrastructure of given type (default is streets (ie, 'way["highway"]') but other
        infrastructures may be selected like power grids (ie, 'way["power"~"line"]'))
    Returns
    -------
    networkx multidigraph
    """

    if clean_periphery and simplify:

        g_buffered = ox.create_graph(response_jsons,
                                     name=name,
                                     retain_all=True,
                                     network_type=network_type)

        # simplify the graph topology
        g = ox.simplify_graph(g_buffered)

        # count how many street segments in buffered graph emanate from each
        # intersection in un-buffered graph, to retain true counts for each
        # intersection, even if some of its neighbors are outside the polygon
        g.graph['streets_per_node'] = ox.count_streets_per_node(
            g, nodes=g.nodes())

    else:

        # create the graph from the downloaded data
        g = ox.create_graph(response_jsons,
                            name=name,
                            retain_all=True,
                            network_type=network_type)

        # simplify the graph topology as the last step. don't truncate after
        # simplifying or you may have simplified out to an endpoint beyond the
        # truncation distance, in which case you will then strip out your entire
        # edge
        if simplify:
            g = ox.simplify_graph(g)

    return g