コード例 #1
0
def test_network_saving_loading():

    # save graph as shapefile and geopackage
    G = ox.graph_from_place(place1, network_type="drive")
    ox.save_graph_shapefile(G)
    ox.save_graph_geopackage(G)

    # save/load graph as graphml file
    ox.save_graphml(G, gephi=True)
    ox.save_graphml(G, gephi=False)
    filepath = os.path.join(ox.settings.data_folder, "graph.graphml")
    G = ox.load_graphml(filepath, node_type=str)

    # test osm xml output
    default_all_oneway = ox.settings.all_oneway
    ox.settings.all_oneway = True
    G = ox.graph_from_point(location_point, dist=500, network_type="drive")
    ox.save_graph_xml(G, merge_edges=False)

    # test osm xml output merge edges
    ox.save_graph_xml(G, merge_edges=True, edge_tag_aggs=[("length", "sum")])

    # test osm xml output from gdfs
    nodes, edges = ox.graph_to_gdfs(G)
    ox.save_graph_xml([nodes, edges])

    # test ordered nodes from way
    df = pd.DataFrame({
        "u": [54, 2, 5, 3, 10, 19, 20],
        "v": [76, 3, 8, 10, 5, 20, 15]
    })
    ordered_nodes = ox.io._get_unique_nodes_ordered_from_way(df)
    assert ordered_nodes == [2, 3, 10, 5, 8]

    ox.settings.all_oneway = default_all_oneway
コード例 #2
0
ファイル: getArcGisShapeFiles.py プロジェクト: huangqyjlu/UTN
def getChangchunTreet():
    treet = ox.graph_from_place(
        ['南关区,长春,中国', '朝阳区,长春,中国', '二道区,长春,中国', '绿园区,长春,中国', '宽城区,长春,中国'],
        network_type='drive')
    treet = ox.project_graph(treet)
    ox.save_graph_shapefile(treet, filename='test2')
    ox.plot_graph(treet)
コード例 #3
0
ファイル: test_osmnx.py プロジェクト: paran93/osmnx
def test_network_saving_loading():

    # save graph as shapefile and geopackage
    G = ox.graph_from_place(place1, network_type="drive")
    ox.save_graph_shapefile(G)
    ox.save_graph_geopackage(G)

    # save/load graph as graphml file
    ox.save_graphml(G, gephi=True)
    ox.save_graphml(G, gephi=False)
    filepath = os.path.join(ox.settings.data_folder, "graph.graphml")
    G2 = ox.load_graphml(filepath)

    # verify everything in G is equivalent in G2
    for (n1, d1), (n2, d2) in zip(G.nodes(data=True), G2.nodes(data=True)):
        assert n1 == n2
        assert d1 == d2
    for (u1, v1, k1, d1), (u2, v2, k2,
                           d2) in zip(G.edges(keys=True, data=True),
                                      G2.edges(keys=True, data=True)):
        assert u1 == u2
        assert v1 == v2
        assert k1 == k2
        assert tuple(d1.keys()) == tuple(d2.keys())
        assert tuple(d1.values()) == tuple(d2.values())
    for (k1, v1), (k2, v2) in zip(G.graph.items(), G2.graph.items()):
        assert k1 == k2
        assert v1 == v2
    assert tuple(G.graph["streets_per_node"].keys()) == tuple(
        G2.graph["streets_per_node"].keys())
    assert tuple(G.graph["streets_per_node"].values()) == tuple(
        G2.graph["streets_per_node"].values())

    # test custom data types
    nd = {"osmid": str}
    ed = {"length": str, "osmid": float}
    G2 = ox.load_graphml(filepath, node_dtypes=nd, edge_dtypes=ed)

    # test osm xml output
    default_all_oneway = ox.settings.all_oneway
    ox.settings.all_oneway = True
    G = ox.graph_from_point(location_point, dist=500, network_type="drive")
    ox.save_graph_xml(G, merge_edges=False)

    # test osm xml output merge edges
    ox.save_graph_xml(G, merge_edges=True, edge_tag_aggs=[("length", "sum")])

    # test osm xml output from gdfs
    nodes, edges = ox.graph_to_gdfs(G)
    ox.save_graph_xml([nodes, edges])

    # test ordered nodes from way
    df = pd.DataFrame({
        "u": [54, 2, 5, 3, 10, 19, 20],
        "v": [76, 3, 8, 10, 5, 20, 15]
    })
    ordered_nodes = ox.io._get_unique_nodes_ordered_from_way(df)
    assert ordered_nodes == [2, 3, 10, 5, 8]

    ox.settings.all_oneway = default_all_oneway
コード例 #4
0
ファイル: test_osmnx.py プロジェクト: zhuang-hao-ming/osmnx
def test_network_saving_loading():

    # save/load graph as shapefile and graphml file
    G = ox.graph_from_place('Piedmont, California, USA')
    G_projected = ox.project_graph(G)
    ox.save_graph_shapefile(G_projected)
    ox.save_graphml(G_projected)
    ox.save_graphml(G_projected, filename='gephi.graphml', gephi=True)
    G2 = ox.load_graphml('graph.graphml')

    # convert graph to node/edge GeoDataFrames and back again
    gdf_edges = ox.graph_to_gdfs(G,
                                 nodes=False,
                                 edges=True,
                                 fill_edge_geometry=False)
    gdf_nodes, gdf_edges = ox.graph_to_gdfs(G,
                                            nodes=True,
                                            edges=True,
                                            node_geometry=True,
                                            fill_edge_geometry=True)
    G3 = ox.gdfs_to_graph(gdf_nodes, gdf_edges)

    # find graph nodes nearest to some set of points
    X = gdf_nodes['x'].head()
    Y = gdf_nodes['y'].head()
    nn1 = ox.get_nearest_nodes(G, X, Y)
    nn2 = ox.get_nearest_nodes(G, X, Y, method='kdtree')
    nn3 = ox.get_nearest_nodes(G, X, Y, method='balltree')
コード例 #5
0
ファイル: test_osmnx.py プロジェクト: gboeing/osmnx
def test_network_saving_loading():

    # save/load graph as shapefile and graphml file
    G = ox.graph_from_place('Piedmont, California, USA')
    G_projected = ox.project_graph(G)
    ox.save_graph_shapefile(G_projected)
    ox.save_graphml(G_projected)
    ox.save_graphml(G_projected, filename='gephi.graphml', gephi=True)
    G2 = ox.load_graphml('graph.graphml')
    G3 = ox.load_graphml('graph.graphml', node_type=str)

    # convert graph to node/edge GeoDataFrames and back again
    gdf_edges = ox.graph_to_gdfs(G, nodes=False, edges=True, fill_edge_geometry=False)
    gdf_nodes, gdf_edges = ox.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)
    G4 = ox.gdfs_to_graph(gdf_nodes, gdf_edges)

    # find graph nodes nearest to some set of points
    X = gdf_nodes['x'].head()
    Y = gdf_nodes['y'].head()
    nn1 = ox.get_nearest_nodes(G, X, Y)
    nn2 = ox.get_nearest_nodes(G, X, Y, method='kdtree')
    nn3 = ox.get_nearest_nodes(G, X, Y, method='balltree')

    # find graph edges nearest to some set of points
    ne1 = ox.get_nearest_edges(G, X, Y)
    ne2 = ox.get_nearest_edges(G, X, Y, method='kdtree')
    ne3 = ox.get_nearest_edges(G, X, Y, method='kdtree', dist=50)
コード例 #6
0
ファイル: osmnxUtils.py プロジェクト: holdUAM/Yeongjong
def get_data(G, district_name):
    # print(nx.info(G))
    print(f'File Path = {PATH}')

    # save as graphml
    path = f'{PATH}/{district_name}.xml'
    ox.save_graphml(G, path)

    # save as .osm
    path = f'{PATH}/{district_name}.osm'
    ox.config(all_oneway=True)
    if not os.path.exists(path):
        ox.save_graph_xml(G, filepath=path)

    # save as folium html
    path = f'{PATH}/{district_name}_folium.html'
    if not os.path.exists(path):
        map_folium = ox.folium.plot_graph_folium(G)
        map_folium.save(path)

    # save as SVG
    path = f'{PATH}/{district_name}_image.svg'
    fig, ax = ox.plot_graph(G,
                            show=False,
                            save=True,
                            close=True,
                            filepath=path)

    # save graph as a shapefile and .csv
    path = f'{PATH}/{district_name}_shape'
    ox.save_graph_shapefile(G, filepath=path)

    make_adjacency_matrix(district_name)
    clean_csv(district_name)
    make_adjacency_required_matrix(district_name)
コード例 #7
0
ファイル: test_osmnx.py プロジェクト: mrapostrophe/osmnx
def test_graph_save_load():

    # save graph as shapefile and geopackage
    G = ox.graph_from_place(place1, network_type="drive")
    ox.save_graph_shapefile(G)
    ox.save_graph_geopackage(G, directed=False)

    # save/load geopackage and convert graph to/from node/edge GeoDataFrames
    fp = ".temp/data/graph-dir.gpkg"
    ox.save_graph_geopackage(G, filepath=fp, directed=True)
    gdf_nodes1 = gpd.read_file(fp, layer="nodes").set_index("osmid")
    gdf_edges1 = gpd.read_file(fp, layer="edges").set_index(["u", "v", "key"])
    G2 = ox.graph_from_gdfs(gdf_nodes1, gdf_edges1)
    G2 = ox.graph_from_gdfs(gdf_nodes1, gdf_edges1, graph_attrs=G.graph)
    gdf_nodes2, gdf_edges2 = ox.graph_to_gdfs(G2)
    assert set(gdf_nodes1.index) == set(gdf_nodes2.index) == set(G.nodes) == set(G2.nodes)
    assert set(gdf_edges1.index) == set(gdf_edges2.index) == set(G.edges) == set(G2.edges)

    # create random boolean graph/node/edge attributes
    attr_name = "test_bool"
    G.graph[attr_name] = False
    bools = np.random.randint(0, 2, len(G.nodes))
    node_attrs = {n: bool(b) for n, b in zip(G.nodes, bools)}
    nx.set_node_attributes(G, node_attrs, attr_name)
    bools = np.random.randint(0, 2, len(G.edges))
    edge_attrs = {n: bool(b) for n, b in zip(G.edges, bools)}
    nx.set_edge_attributes(G, edge_attrs, attr_name)

    # save/load graph as graphml file
    ox.save_graphml(G, gephi=True)
    ox.save_graphml(G, gephi=False)
    filepath = Path(ox.settings.data_folder) / "graph.graphml"
    G2 = ox.load_graphml(
        filepath,
        graph_dtypes={attr_name: ox.io._convert_bool_string},
        node_dtypes={attr_name: ox.io._convert_bool_string},
        edge_dtypes={attr_name: ox.io._convert_bool_string},
    )

    # verify everything in G is equivalent in G2
    assert tuple(G.graph.keys()) == tuple(G2.graph.keys())
    assert tuple(G.graph.values()) == tuple(G2.graph.values())
    z = zip(G.nodes(data=True), G2.nodes(data=True))
    for (n1, d1), (n2, d2) in z:
        assert n1 == n2
        assert tuple(d1.keys()) == tuple(d2.keys())
        assert tuple(d1.values()) == tuple(d2.values())
    z = zip(G.edges(keys=True, data=True), G2.edges(keys=True, data=True))
    for (u1, v1, k1, d1), (u2, v2, k2, d2) in z:
        assert u1 == u2
        assert v1 == v2
        assert k1 == k2
        assert tuple(d1.keys()) == tuple(d2.keys())
        assert tuple(d1.values()) == tuple(d2.values())

    # test custom data types
    nd = {"osmid": str}
    ed = {"length": str, "osmid": float}
    G2 = ox.load_graphml(filepath, node_dtypes=nd, edge_dtypes=ed)
コード例 #8
0
def wkt_to_graph(wkt_list, im_file, conf, out_graph_file):
    min_subgraph_length_pix = 300
    verbose = False
    super_verbose = False
    make_plots = False
    save_shapefiles = False
    pickle_protocol = 4

    if (len(wkt_list) == 0) or (wkt_list[0] == 'LINESTRING EMPTY'):
        return None

    try:
        G = wkt_to_G(wkt_list,
                     im_file=im_file,
                     min_subgraph_length_pix=min_subgraph_length_pix,
                     verbose=super_verbose)
        if len(G.nodes()) == 0:
            return None
    except Exception as e:
        print('Exception in wkt_to_G: {}, {}'.format(str(e), out_graph_file))
        return None

    node = list(G.nodes())[-1]
    if verbose:
        print(node, 'random node props:', G.nodes[node])

    # print an edge
    edge_tmp = list(G.edges())[-1]
    if verbose:
        print(edge_tmp, "random edge props:",
              G.edges([edge_tmp[0],
                       edge_tmp[1]]))  #G.edge[edge_tmp[0]][edge_tmp[1]])

    nx.write_gpickle(G, out_graph_file, protocol=pickle_protocol)

    # save shapefile as well?
    if save_shapefiles:
        ox.save_graph_shapefile(G,
                                filename=image_id.split('.')[0],
                                folder=graph_dir,
                                encoding='utf-8')

    # plot, if desired
    if make_plots:
        outfile_plot = 'debug_ox.png'
        if verbose:
            print("Plotting graph...")
            print("outfile_plot:", outfile_plot)
        ox.plot_graph(
            G,
            fig_height=9,
            fig_width=9,
            #save=True, filename=outfile_plot, margin=0.01)
        )
        #plt.tight_layout()
        plt.savefig(outfile_plot, dpi=400)
コード例 #9
0
def test_network_saving_loading():

    G = ox.graph_from_place('Piedmont, California, USA')
    G_projected = ox.project_graph(G)
    ox.save_graph_shapefile(G_projected)
    ox.save_graphml(G_projected)
    G2 = ox.load_graphml('graph.graphml')

    gdf_edges = ox.graph_to_gdfs(G, nodes=False, edges=True, fill_edge_geometry=False)
    gdf_nodes, gdf_edges = ox.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)
    G3 = ox.gdfs_to_graph(gdf_nodes, gdf_edges)
コード例 #10
0
ファイル: networkFromPoint.py プロジェクト: Chipdelmal/MoNeT
def exportBuildingCoordinates(point, name):
    # point must be a tuple (lat,long)
    buildings = ox.buildings_from_point(point=point, distance=1800)
    centroidList = buildings.centroid
    placeCoordCSV = open(name + "_LatLongs.csv", "w")
    for i in centroidList:
        placeCoordCSV.write(str(i.y) + ',' + str(i.x) + '\n')
    placeCoordCSV.close()
    network = ox.graph_from_point(point, distance=1800)
    ox.save_graphml(network, filename=name + '.grpahml', folder='network')
    ox.save_graph_shapefile(network, filename=name, folder='network')
コード例 #11
0
    def __init__(self):

        start_time = time.time()

        G = ox.graph_from_place("Florianópolis, Brazil", network_type="drive")
        #fig, ax = ox.plot_graph(G)
        ox.save_graphml(G, filepath=arquivo_graphml)
        ox.save_graph_shapefile(G, filepath=diretorio_shape_network)

        end_time = time.time()
        print("Tempo de execucao = %s segundos." % (end_time - start_time))
コード例 #12
0
def test_network_saving_loading():

    with httmock.HTTMock(get_mock_response_content('overpass-response-7.json.gz')):
        G = ox.graph_from_place('Piedmont, California, USA')
    G_projected = ox.project_graph(G)
    ox.save_graph_shapefile(G_projected)
    ox.save_graphml(G_projected)
    G2 = ox.load_graphml('graph.graphml')

    gdf_edges = ox.graph_to_gdfs(G, nodes=False, edges=True, fill_edge_geometry=False)
    gdf_nodes, gdf_edges = ox.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True, fill_edge_geometry=True)
    G3 = ox.gdfs_to_graph(gdf_nodes, gdf_edges)
コード例 #13
0
ファイル: radroads.py プロジェクト: tisttsf/RadRoads
def GetRoads(city, ntype='all_private'):
    """
    Load road network data (shapefile) locally. If not available,
    download the data through OpenStreetMap Nominatim API first.
    
    Parameters
    ----------
    city : string
        The name of the city (or place) of interest.
    ntype : string
        The type of street network to get.
        {'walk', 'bike', 'drive', 'drive_service', 'all', 'all_private'} 
    Returns
    -------
    G_nodes : geopandas.geodataframe.GeoDataFrame
        The GeoDataFrame of the nodes of city road network.
    G_edges : geopandas.geodataframe.GeoDataFrame
        The GeoDataFrame of the edges of city road network.
    Notes
    -----
    If data download is unsuccessful, check query results on
    the Nominatim web page and see if available results exist.
    """

    # load road network from local data
    try:
        G_nodes = gpd.read_file("data/" + city + "/nodes/nodes.shp")
        G_edges = gpd.read_file("data/" + city + "/edges/edges.shp")
        print("Existing local data of " + city + " is loaded as shapefiles\n")

    # download from OpenStreetMap if local data is not available
    except:
        # try different query results
        print("Trying to download the network of " + city +
              " through OSM Nominatim\n")
        n = 1
        while n <= 5:
            try:
                G = ox.graph_from_place(query=city,
                                        network_type=ntype,
                                        which_result=n)
                break
            except ValueError:
                n += 1
        ox.save_graph_shapefile(G,
                                filename=city,
                                folder=None,
                                encoding='utf-8')
        G_nodes = gpd.read_file("data/" + city + "/nodes/nodes.shp")
        G_edges = gpd.read_file("data/" + city + "/edges/edges.shp")
        print("Data of " + city +
              " is downloaded, saved, and loaded as shapefiles\n")
    return G_nodes, G_edges
コード例 #14
0
    def __init__(self):

        start_time = time.time()

        # get a graph for some city
        G = ox.graph_from_place("Florianópolis, Brazil", network_type="drive")
        # fig, ax = ox.plot_graph(G)

        # save graph to disk as geopackage (for GIS) or graphml file (for gephi etc)
        # ox.save_graph_geopackage(G, filepath='./data/mynetwork.gpkg')
        ox.save_graphml(G, filepath=arquivo_graphml)
        ox.save_graph_shapefile(G, filepath=diretorio_shape_network)

        end_time = time.time()
        print("Tempo de execução = %s segundos." % (end_time - start_time))
コード例 #15
0
def infer_travel_time(params):
    '''Get an estimate of the average speed and travel time of each edge
    in the graph from the mask and conversion dictionary
    For each edge, get the geometry in pixel coords
      For each point, get the neareast neighbors in the maks and infer 
      the local speed'''

    G_, mask, conv_dict, min_z, dx, dy, \
                      percentile, \
                      max_speed_band, use_weighted_mean, \
                      variable_edge_speed, \
                      verbose, \
                      out_file, pickle_protocol, \
                      save_shapefiles, im_root, graph_dir_out \
    = params

    mph_to_mps = 0.44704  # miles per hour to meters per second

    for i, (u, v, edge_data) in enumerate(G_.edges(data=True)):
        tot_hours, mean_speed_mph, length_miles = \
                get_edge_time_properties(mask, edge_data, conv_dict,
                             min_z=min_z, dx=dx, dy=dy,
                             percentile=percentile,
                             max_speed_band=max_speed_band,
                             use_weighted_mean=use_weighted_mean,
                             variable_edge_speed=variable_edge_speed,
                             verbose=verbose)
        # update edges
        edge_data['Travel Time (h)'] = tot_hours
        edge_data['inferred_speed_mph'] = np.round(mean_speed_mph, 2)
        edge_data['length_miles'] = length_miles
        edge_data['inferred_speed_mps'] = np.round(mean_speed_mph * mph_to_mps,
                                                   2)
        edge_data['travel_time_s'] = np.round(3600. * tot_hours, 3)

    G = G_.to_undirected()
    # save graph
    nx.write_gpickle(G, out_file, protocol=pickle_protocol)

    # save shapefile as well?
    if save_shapefiles:
        G_out = G
        ox.save_graph_shapefile(G_out,
                                filename=im_root,
                                folder=graph_dir_out,
                                encoding='utf-8')

    return G_
コード例 #16
0
def get_street_network(query_dict, output_folder, area_name):
    G = ox.graph_from_place(query_dict, network_type='drive_service')
    G_projected = ox.project_graph(G)

    ox.save_graph_shapefile(G_projected,
                            filename=os.path.join(output_folder, area_name))
    try:
        shutil.rmtree(os.path.join(output_folder, area_name))
    except OSError:
        pass
    shutil.move(os.path.join('data', area_name), os.path.join(output_folder))
    shutil.rmtree('data')
    ox.save_graphml(G,
                    filename=area_name + '.graphml',
                    folder=os.path.join(output_folder, area_name))
    return G
コード例 #17
0
def test_graph_save_load():

    # save graph as shapefile and geopackage
    G = ox.graph_from_place(place1, network_type="drive")
    ox.save_graph_shapefile(G)
    ox.save_graph_geopackage(G, directed=False)

    # save/load geopackage and convert graph to/from node/edge GeoDataFrames
    fp = ".temp/data/graph-dir.gpkg"
    ox.save_graph_geopackage(G, filepath=fp, directed=True)
    gdf_nodes1 = gpd.read_file(fp, layer="nodes").set_index("osmid")
    gdf_edges1 = gpd.read_file(fp, layer="edges").set_index(["u", "v", "key"])
    G2 = ox.graph_from_gdfs(gdf_nodes1, gdf_edges1, graph_attrs=G.graph)
    gdf_nodes2, gdf_edges2 = ox.graph_to_gdfs(G2)
    assert set(gdf_nodes1.index) == set(gdf_nodes2.index) == set(G.nodes) == set(G2.nodes)
    assert set(gdf_edges1.index) == set(gdf_edges2.index) == set(G.edges) == set(G2.edges)

    # save/load graph as graphml file
    ox.save_graphml(G, gephi=True)
    ox.save_graphml(G, gephi=False)
    filepath = Path(ox.settings.data_folder) / "graph.graphml"
    G2 = ox.load_graphml(filepath)

    # verify everything in G is equivalent in G2
    for (n1, d1), (n2, d2) in zip(G.nodes(data=True), G2.nodes(data=True)):
        assert n1 == n2
        assert d1 == d2
    for (u1, v1, k1, d1), (u2, v2, k2, d2) in zip(
        G.edges(keys=True, data=True), G2.edges(keys=True, data=True)
    ):
        assert u1 == u2
        assert v1 == v2
        assert k1 == k2
        assert tuple(d1.keys()) == tuple(d2.keys())
        assert tuple(d1.values()) == tuple(d2.values())
    for (k1, v1), (k2, v2) in zip(G.graph.items(), G2.graph.items()):
        assert k1 == k2
        assert v1 == v2

    # test custom data types
    nd = {"osmid": str}
    ed = {"length": str, "osmid": float}
    G2 = ox.load_graphml(filepath, node_dtypes=nd, edge_dtypes=ed)
コード例 #18
0
def simple_get_roads(city):
    """
    Use osmnx to get a simplified version of open street maps for the city
    Writes osm_nodes and osm_ways shapefiles to MAP_FP
    Args:
        city
    Returns:
        None, but creates the following shape files:
           osm_ways.shp - the simplified road network
           osm_nodes.shp - the intersections and dead ends
        And creates the following directory:
           all_nodes - containing edges and nodes directories
               for the unsimplified road network
    """

    G1 = ox.graph_from_place(city, network_type='drive', simplify=False)
    G = ox.simplify_graph(G1)

    # Label endpoints
    streets_per_node = ox.count_streets_per_node(G)
    for node, count in list(streets_per_node.items()):
        if count <= 1:
            G.nodes()[node]['dead_end'] = True

    # osmnx creates a directory for the nodes and edges
    # Store all nodes, since they can be other features
    ox.save_graph_shapefile(G1, filename='all_nodes', folder=MAP_FP)

    # Store simplified network
    ox.save_graph_shapefile(G, filename='temp', folder=MAP_FP)

    # Copy and remove temp directory
    tempdir = os.path.join(MAP_FP, 'temp')
    for filename in os.listdir(os.path.join(tempdir, 'edges')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'edges', filename),
                    os.path.join(MAP_FP, 'osm_ways.' + extension))
    for filename in os.listdir(os.path.join(tempdir, 'nodes')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'nodes', filename),
                    os.path.join(MAP_FP, 'osm_nodes.' + extension))
    shutil.rmtree(tempdir)
コード例 #19
0
# Create place boundary shapefiles from OpenStreetMap
Bracciano_shp = ox.gdf_from_place('Bracciano, Italy')
ox.save_gdf_shapefile(Bracciano_shp)

# using NetworkX to calculate the shortest path between two random nodes
route = nx.shortest_path(B, np.random.choice(B.nodes),
                         np.random.choice(B.nodes))
ox.plot_graph_route(B, route, fig_height=10, fig_width=10)

# save street network as GraphML file
B_projected = ox.project_graph(B)
ox.save_graphml(B_projected, filename='network_Bracciano_6km_epgs4326.graphml')

# save street network as ESRI shapefile (includes NODES and EDGES)
ox.save_graph_shapefile(B_projected, filename='networkBracciano-shape')

#street network from bounding box
#G = ox.graph_from_bbox(42.2511, 41.3860, 11.6586, 13.4578, network_type='drive_service')

# G=ox.graph_from_address('Rome, Italy',distance=60000,network_type='drive')
G = ox.graph_from_address('Rome, Italy', distance=6000, network_type='drive')
Bracciano = ox.graph_from_address('Bracciano, Italy',
                                  distance=6000,
                                  network_type='drive')
# Bracciano = ox.graph_from_address('Bracciano, Italy',distance=6000)

#G_projected = ox.project_graph(G)
ox.plot_graph(Bracciano)

# ox.save_graphml(G, filename='networkRM_Provincia_60km_epgs4326.graphml')
コード例 #20
0
def simple_get_roads(config):
    """
    Use osmnx to get a simplified version of open street maps for the city
    Writes osm_nodes and osm_ways shapefiles to MAP_FP
    Args:
        city
    Returns:
        None, but creates the following shape files:
           osm_ways.shp - the simplified road network
           osm_nodes.shp - the intersections and dead ends
        And creates the following directory:
           all_nodes - containing edges and nodes directories
               for the unsimplified road network
    """

    # confirm if a polygon is available for this city, which determines which
    # graph function is appropriate
    print("searching nominatim for " + str(config['city']) + " polygon")
    polygon_pos = find_osm_polygon(config['city'])

    if (polygon_pos is not None):
        print("city polygon found in OpenStreetMaps at position " +
              str(polygon_pos) + ", building graph of roads within " +
              "specified bounds")
        G1 = ox.graph_from_place(config['city'],
                                 network_type='drive',
                                 simplify=False,
                                 which_result=polygon_pos)

    else:
        # City & lat+lng+radius required from config to graph from point
        if ('city' not in list(config.keys()) or config['city'] is None):
            sys.exit('city is required in config file')

        if ('city_latitude' not in list(config.keys())
                or config['city_latitude'] is None):
            sys.exit('city_latitude is required in config file')

        if ('city_longitude' not in list(config.keys())
                or config['city_longitude'] is None):
            sys.exit('city_longitude is required in config file')

        if ('city_radius' not in list(config.keys())
                or config['city_radius'] is None):
            sys.exit('city_radius is required in config file')

        print("no city polygon found in OpenStreetMaps, building graph of " +
              "roads within " + str(config['city_radius']) + "km of city " +
              str(config['city_latitude']) + " / " +
              str(config['city_longitude']))
        G1 = ox.graph_from_point(
            (config['city_latitude'], config['city_longitude']),
            distance=config['city_radius'] * 1000,
            network_type='drive',
            simplify=False)

    G = ox.simplify_graph(G1)

    # Label endpoints
    streets_per_node = ox.count_streets_per_node(G)
    for node, count in list(streets_per_node.items()):
        if count <= 1:
            G.nodes()[node]['dead_end'] = True

    # osmnx creates a directory for the nodes and edges
    # Store all nodes, since they can be other features
    ox.save_graph_shapefile(G1, filename='all_nodes', folder=MAP_FP)

    # Store simplified network
    ox.save_graph_shapefile(G, filename='temp', folder=MAP_FP)

    # Copy and remove temp directory
    tempdir = os.path.join(MAP_FP, 'temp')
    for filename in os.listdir(os.path.join(tempdir, 'edges')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'edges', filename),
                    os.path.join(MAP_FP, 'osm_ways.' + extension))
    for filename in os.listdir(os.path.join(tempdir, 'nodes')):
        name, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'nodes', filename),
                    os.path.join(MAP_FP, 'osm_nodes.' + extension))
    shutil.rmtree(tempdir)
コード例 #21
0
place_names = ['Ho Chi Minh City, Vietnam',
               #'Beijing, China', 
               #'Jakarta, Indonesia',
               'London, UK',
               'Los Angeles, California, USA',
               'Manila, Philippines',
               #'Mexico City, Mexico',
               'New Delhi, India',
               'Sao Paulo, Brazil',
               'New York, New York, USA',
               'Seoul',
               'Singapore',
               #'Tokyo, Japan',
               #'Nairobi, Kenya',
               #'Bangalore, India'
              ]
              
# In this for-loop, we save all the shapefiles for the valid cities.
for city in place_names:  
    city_admin_20kmbuff = ox.gdf_from_place(city, gdf_name = 'global_cities', buffer_dist = 20000)
    fig, ax = ox.plot_shape(city_admin_20kmbuff)
    ox.save_gdf_shapefile(city_admin_20kmbuff, filename = city)
    
# In this for-loop, we save all the street networks for the valid cities.
for city in place_names:
    grid = ox.graph_from_place(city, network_type = 'drive', retain_all = True)
    grid_projected = ox.project_graph(grid)
    ox.save_graph_shapefile(grid_projected, filename = city + '_grid')
    ox.plot_graph(grid_projected)
コード例 #22
0

#indir = "data/vector/city_boundaries/"
for city in cities:
    name = os.path.basename(city).split('.')[0]
    
    place = gpd.read_file(city)
    place_simple = place.unary_union # disolving boundaries based on attributes

    # Use retain_all if you want to keep all disconnected subgraphs (e.g. when your places aren't adjacent)
    G = ox.graph_from_polygon(place_simple, network_type='drive', retain_all=True)
    G_projected = ox.project_graph(G)

    # save the shapefile to disk
    #name = os.path.basename("beijing.shp")).split(".")[0]  # make better place_names
    ox.save_graph_shapefile(G_projected, filename=name)

    area = ox.project_gdf(place).unary_union.area
    stats = ox.basic_stats(G, area=area)
    # save to file:
    def ensure_dir(file_path):
        directory = os.path.dirname(file_path)
        if not os.path.exists(directory):
            os.makedirs(directory)

    path = os.path.join('data/vector/city_networks/', name)
    ensure_dir(path)
    with open(path + '_stats.json', 'wb') as f:
        json.dump(stats, f)
        
コード例 #23
0
def add_travel_time_dir(graph_dir, mask_dir, conv_dict, graph_dir_out,
                      min_z=128, dx=4, dy=4, percentile=90,
                      use_totband=True, use_weighted_mean=True,
                      variable_edge_speed=False, mask_prefix='',
                      save_shapefiles=True,
                      verbose=False):
    '''Update graph properties to include travel time for entire directory'''
    pickle_protocol = 4     # 4 is most recent, python 2.7 can't read 4

    #logger1.info("Updating graph properties to include travel time")
    #logger1.info("  Writing to: " + str(graph_dir_out))
    os.makedirs(graph_dir_out, exist_ok=True)
    
    image_names = sorted([z for z in os.listdir(mask_dir) if z.endswith('.tif')])
    for i,image_name in enumerate(image_names):
        im_root = image_name.split('.')[0]
        image_id = 'AOI' + im_root.split('AOI')[-1]

        if len(mask_prefix) > 0:
            im_root = im_root.split(mask_prefix)[-1]
        out_file = os.path.join(graph_dir_out, image_id + '.gpickle')
           
        #if (i % 1) == 0:
            #logger1.info("\n" + str(i+1) + " / " + str(len(image_names)) + " " + image_name + " " + im_root)
        mask_path = os.path.join(mask_dir, image_name)
        graph_path = os.path.join(graph_dir,  image_id + '.gpickle')
        
        if not os.path.exists(graph_path):
            #logger1.info("  ", i, "DNE, skipping: " + str(graph_path))
            return
            # continue
            
        #if verbose:
            #logger1.info("mask_path: " + mask_path)
            #logger1.info("graph_path: " + graph_path)
        
        mask = skimage.io.imread(mask_path)
        G_raw = nx.read_gpickle(graph_path)
        
        # see if it's empty
        if len(G_raw.nodes()) == 0:
            nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol)
            continue
        
        G = infer_travel_time(G_raw, mask, conv_dict,
                             min_z=min_z, dx=dx, dy=dy,
                             percentile=percentile,
                             use_totband=use_totband, 
                             use_weighted_mean=use_weighted_mean,
                             variable_edge_speed=variable_edge_speed,
                             verbose=verbose)
        G = G.to_undirected()
        # save graph
        ##logger1.info("Saving graph to directory: " + graph_dir)
        #out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle')
        nx.write_gpickle(G, out_file, protocol=pickle_protocol)

        # save shapefile as well?
        if save_shapefiles:
            G_out = G # ox.simplify_graph(G.to_directed())
            if len(G_out.edges()) == 0:
                continue
            #logger1.info("Saving shapefile to directory: {}".format(graph_dir_out))
            ox.save_graph_shapefile(G_out, filename=image_id, folder=graph_dir_out,
                                    encoding='utf-8')
#            ox.save_graph_shapefile(G_out, filename=im_root, folder=graph_dir_out,
#                                    encoding='utf-8')
            #out_file2 = os.path.join(graph_dir, image_id.split('.')[0] + '.graphml')
            #ox.save_graphml(G, image_id.split('.')[0] + '.graphml', folder=graph_dir)


    return
コード例 #24
0
ファイル: OSM API.py プロジェクト: JulianBarinton/WEEFcrawler
bike - get all streets and paths that cyclists can use
all - download all non-private OSM streets and paths
all_private - download all OSM streets and paths, including private-access ones
'''
import osmnx as ox
import geopandas as gpd
# get the streets network from the name of a place
# place = 'Piedmont, California, USA'
# G = ox.graph_from_place(place, network_type='drive')
# ox.save_graph_shapefile(G, filepath='Output/piedmont')

# get the streets network from a bounding box
Area = gpd.read_file('Input/Namajavira_4326.shp')
minx, miny, maxx, maxy = Area.geometry.total_bounds
G = ox.graph_from_bbox(miny, maxy, minx, maxx, network_type='drive')
ox.save_graph_shapefile(G, filepath='Output/streets')

############ Requests from query ###########

import requests
import json
overpass_url = "http://overpass-api.de/api/interpreter"
overpass_query = """
[out:json];
area["ISO3166-1"="DE"][admin_level=2];
(node["amenity"="biergarten"](area);
 way["amenity"="biergarten"](area);
 rel["amenity"="biergarten"](area);
);
out center;
"""
コード例 #25
0
        

for place in places:
    
    name = (place.replace(",","").replace(" ","")) # make better place_names
    print('working on: ', name)

    #make a geodataframe of the street network (outline) from openstreetmap place names
    # use retain_all if you want to keep all disconnected subgraphs (e.g. when your places aren't adjacent)
    G = ox.graph_from_place(place, network_type='drive', retain_all=True)
    G = ox.project_graph(G)
    
    #make a geodataframe of the shape (outline) from openstreetmap place names
    gdf = ox.gdf_from_place(place)
    gdf = ox.project_gdf(gdf)
    ox.save_graph_shapefile(G, filename=name)
    
    
    print(name, ' has crs:' ) 
    gdf.to_crs({'init': 'epsg:3395'})
    # Confirm big step of projection change
    
    # calculate basic stats for the shape
    # TODO adjust this to calculate stats based on neighborhoods
    stats = ox.basic_stats(G, area=gdf['geometry'].area[0])
    print('area', gdf['area'][0] / 10**6, 'sqkm')

    # save to file:
    def ensure_dir(file_path):
        directory = os.path.dirname(file_path)
        if not os.path.exists(directory):
コード例 #26
0
ox.__version__

##Area by lat/long points listed below:
north, south, east, west = 40.0680, 40.0135, -111.7046, -111.7771


'''
place = 'Payson, Utah, USA'
gdf = ox.gdf_from_place(place)
#gdf.loc[0, 'geometry']
ox.save_gdf_shapefile(gdf, filename='place-shape2', folder='data')'''

print('hi')

B = ox.graph_from_bbox(north, south, east, west, network_type='drive')
ox.save_graph_shapefile(B, filename='the-place', folder='data')

print('hi hi')
'''B = ox.graph_from_bbox(north, south, east, west, network_type='drive')
gdf_nodes, gdf_edges = ox.graph_to_gdfs(
        B,
        nodes=True, edges=True,
        node_geometry=True,
        fill_edge_geometry=True)

ox.save_gdf_shapefile(gdf_nodes, filename='the_places_nodes', folder='data')
ox.save_gdf_shapefile(gdf_edges, filename='the_places_edges', folder='data')
'''
'''
north, south, east, west = 40.0680, 40.0135, -111.7046, -111.7771
gdf = ox.gdf_from_bbox(north, south, east, west, network_type='drive')
コード例 #27
0
ファイル: 05_wkt_to_G.py プロジェクト: xian1234/cresi
def main():
    
    global logger1 
    
    # min_subgraph_length_pix = 300
    min_spur_length_m = 0.001  # default = 5
    local = False #True
    verbose = True
    super_verbose = False
    make_plots = False #True
    save_shapefiles = True #False
    pickle_protocol = 4     # 4 is most recent, python 2.7 can't read 4
    
    # local
    if local:
        albu_path = '/Users/avanetten/Documents/cosmiq/apls/albu_inference_mod'
        path_images = '/Users/avanetten/Documents/cosmiq/spacenet/data/spacenetv2/AOI_2_Vegas_Test/400m/RGB-PanSharpen'
        res_root_dir = os.path.join(albu_path, 'results/2m_4fold_512_30e_d0.2_g0.2_AOI_2_Vegas_Test')
        csv_file = os.path.join(res_root_dir, 'wkt_submission.csv')
        graph_dir = os.path.join(res_root_dir, 'graphs')
        log_file = os.path.join(res_root_dir, 'wkt_to_G.log')
        #os.makedirs(graph_dir, exist_ok=True)
        try:
            os.makedirs(graph_dir)
        except:
            pass
    
    # deployed on dev box
    else:
        parser = argparse.ArgumentParser()
        parser.add_argument('config_path')
        args = parser.parse_args()
        with open(args.config_path, 'r') as f:
            cfg = json.load(f)
            config = Config(**cfg)
            
        # outut files
        res_root_dir = os.path.join(config.path_results_root, config.test_results_dir)
        path_images = os.path.join(config.path_data_root, config.test_data_refined_dir)
        csv_file = os.path.join(res_root_dir, config.wkt_submission)
        graph_dir = os.path.join(res_root_dir, config.graph_dir)
        log_file = os.path.join(res_root_dir, 'wkt_to_G.log')
        os.makedirs(graph_dir, exist_ok=True)

        min_subgraph_length_pix = config.min_subgraph_length_pix
        min_spur_length_m = config.min_spur_length_m

    console, logger1 = make_logger.make_logger(log_file, logger_name='log')
#    ###############################################################################
#    # https://docs.python.org/3/howto/logging-cookbook.html#logging-to-multiple-destinations
#    # set up logging to file - see previous section for more details
#    logging.basicConfig(level=logging.DEBUG,
#                        format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
#                        datefmt='%m-%d %H:%M',
#                        filename=log_file,
#                        filemode='w')
#    # define a Handler which writes INFO messages or higher to the sys.stderr
#    console = logging.StreamHandler()
#    console.setLevel(logging.INFO)
#    # set a format which is simpler for console use
#    formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
#    #formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
#    # tell the handler to use this format
#    console.setFormatter(formatter)
#    # add the handler to the root logger
#    logging.getLogger('').addHandler(console)
#    logger1 = logging.getLogger('log')
#    logger1.info("log file: {x}".format(x=log_file))
#    ###############################################################################  
 
    
#    csv_file = os.path.join(res_root_dir, 'merged_wkt_list.csv')
#    graph_dir = os.path.join(res_root_dir, 'graphs')
#    #os.makedirs(graph_dir, exist_ok=True)
#    try:
#        os.makedirs(graph_dir)
#    except:
#        pass

    # read in wkt list
    logger1.info("df_wkt at: {}".format(csv_file))
    #print ("df_wkt at:", csv_file)
    df_wkt = pd.read_csv(csv_file)
    # columns=['ImageId', 'WKT_Pix'])

    # iterate through image ids and create graphs
    t0 = time.time()
    image_ids = np.sort(np.unique(df_wkt['ImageId']))
    print("image_ids:", image_ids)
    print("len image_ids:", len(image_ids))

    for i,image_id in enumerate(image_ids):
        
        #if image_id != 'AOI_2_Vegas_img586':
        #    continue
        out_file = os.path.join(graph_dir, image_id.split('.')[0] + '.gpickle')
        
        logger1.info("\n{x} / {y}, {z}".format(x=i+1, y=len(image_ids), z=image_id))
        #print ("\n")
        #print (i, "/", len(image_ids), image_id)
                    
        # for geo referencing, im_file should be the raw image
        if config.num_channels == 3:
            im_file = os.path.join(path_images, 'RGB-PanSharpen_' + image_id + '.tif')
        else:
            im_file = os.path.join(path_images, 'MUL-PanSharpen_' + image_id + '.tif')   
        #im_file = os.path.join(path_images, image_id)
        if not os.path.exists(im_file):
            im_file = os.path.join(path_images, image_id + '.tif')
        
        # filter 
        df_filt = df_wkt['WKT_Pix'][df_wkt['ImageId'] == image_id]
        wkt_list = df_filt.values
        #wkt_list = [z[1] for z in df_filt_vals]
        
        # print a few values
        logger1.info("\n{x} / {y}, num linestrings: {z}".format(x=i+1, y=len(image_ids), z=len(wkt_list)))
        #print ("\n", i, "/", len(image_ids), "num linestrings:", len(wkt_list))
        if verbose:
            print ("image_file:", im_file)
            print ("  wkt_list[:2]", wkt_list[:2])
    
        if (len(wkt_list) == 0) or (wkt_list[0] == 'LINESTRING EMPTY'):
            G = nx.MultiDiGraph()
            nx.write_gpickle(G, out_file, protocol=pickle_protocol)
            continue
        
        # create graph
        t1 = time.time()
        G = wkt_to_G(wkt_list, im_file=im_file, 
                     min_subgraph_length_pix=min_subgraph_length_pix,
                     min_spur_length_m=min_spur_length_m,
                     verbose=super_verbose)
        t2 = time.time()
        if verbose:
            logger1.info("Time to create graph: {} seconds".format(t2-t1))
            #print ("Time to create graph:", t2-t1, "seconds")
            
        if len(G.nodes()) == 0:
            nx.write_gpickle(G, out_file, protocol=pickle_protocol)
            continue
        
        # print a node
        node = list(G.nodes())[-1]
        print (node, "random node props:", G.nodes[node])
        # print an edge
        edge_tmp = list(G.edges())[-1]
        #print (edge_tmp, "random edge props:", G.edges([edge_tmp[0], edge_tmp[1]])) #G.edge[edge_tmp[0]][edge_tmp[1]])
        print (edge_tmp, "random edge props:", G.get_edge_data(edge_tmp[0], edge_tmp[1]))

        # save graph
        logger1.info("Saving graph to directory: {}".format(graph_dir))
        #print ("Saving graph to directory:", graph_dir)
        nx.write_gpickle(G, out_file, protocol=pickle_protocol)
        
        # save shapefile as well?
        if save_shapefiles:
            logger1.info("Saving shapefile to directory: {}".format(graph_dir))
            try:
                ox.save_graph_shapefile(G, filename=image_id.split('.')[0] , folder=graph_dir, encoding='utf-8')
            except:
                print("Cannot save shapefile...")
            #out_file2 = os.path.join(graph_dir, image_id.split('.')[0] + '.graphml')
            #ox.save_graphml(G, image_id.split('.')[0] + '.graphml', folder=graph_dir)

        # plot, if desired
        if make_plots:
            print ("Plotting graph...")
            outfile_plot = os.path.join(graph_dir, image_id)
            print ("outfile_plot:", outfile_plot)
            ox.plot_graph(G, fig_height=9, fig_width=9, 
                          #save=True, filename=outfile_plot, margin=0.01)
                          )
            #plt.tight_layout()
            plt.savefig(outfile_plot, dpi=400)
            
        #if i > 30:
        #    break
        
    tf = time.time()
    logger1.info("Time to run wkt_to_G.py: {} seconds".format(tf - t0))
コード例 #28
0
ファイル: radroads.py プロジェクト: tisttsf/RadRoads
def RadRoads(city, ntype='all_private', limit=5):
    """
    In a given city (or geographical area) in OSM:
    find the straightest and curviest roads by name;
    find the shortest and longest roads by name.
    
    Parameters
    ----------
    city : string
        The name of the city (or place) of interest.
    ntype : string
        The type of street network to get.
        {'walk', 'bike', 'drive', 'drive_service', 'all', 'all_private'}
    limit : integer
        Number of top records to be listed in each category.
    Returns
    -------
    1. name and length of the shortest roads
        and a dataframe of a top list
    2. name and length of the longest roads
        and a dataframe of a top list
    3. name and sinuosity info of the straightest road
        and a dataframe of a top list
    4. name and sinuosity info of the curviest road
        and a dataframe of a top list
    5. network graph plot of the given city
        with top roads marked with colors
    """

    # load data
    # load road network from local data
    try:
        G_nodes = gpd.read_file("data/" + city + "/nodes/nodes.shp")
        G_edges = gpd.read_file("data/" + city + "/edges/edges.shp")
        print("Existing local data of " + city + " is loaded as shapefiles\n")

    # download from OpenStreetMap if local data is not available
    except:
        # try different query results
        print("Trying to download the network of " + city +
              " through OSM Nominatim\n")
        n = 1
        while n <= 5:
            try:
                G = ox.graph_from_place(query=city,
                                        network_type=ntype,
                                        which_result=n)
                break
            except ValueError:
                n += 1
        ox.save_graph_shapefile(G,
                                filename=city,
                                folder=None,
                                encoding='utf-8')
        G_nodes = gpd.read_file("data/" + city + "/nodes/nodes.shp")
        G_edges = gpd.read_file("data/" + city + "/edges/edges.shp")
        print("Data of " + city +
              " is downloaded, saved, and loaded as shapefiles\n")

    ##################################################################
    # NOTICE: 'length' specified with method call may cause problems #
    ##################################################################

    # combine road segments and aggregate the total lengths
    G_edges['length'] = G_edges['length'].astype('float')
    dict_v = {'length': 'sum', 'highway': 'first', 'oneway': 'first'}
    table = G_edges.groupby('name').agg(dict_v).reset_index()

    # remove messy segments w/o names
    table = table[table['name'] != '']
    table.dropna(how='any', inplace=True)

    ### LENGTH ###

    # calculate shortest and longest roads
    short = table.sort_values(by='length', ascending=True).head(limit)
    long = table.sort_values(by='length', ascending=False).head(limit)

    # extract road names
    roads = list(G_edges['name'].unique())
    roads.remove('')  ### remove messy segements without names ###
    rnames = []
    dist_d = []
    dist_l = []
    sinuosity = []

    ### SINUOSITY ###

    # calculate sinuosity for each road
    # create a dataframe containing all the segments of a road for each road
    for i, r in enumerate(roads):
        df_road = G_edges[G_edges['name'] == roads[i]]
        # list all the nodes
        road_nodes = list(df_road['from'].values) + list(df_road['to'].values)
        # count all the nodes
        tdict = dict(Counter(road_nodes))
        tdf = pd.DataFrame(list(tdict.items()), columns=['node', 'count'])
        # select nodes that only occur once (terminals of a road)
        tdf_sub = tdf[tdf['count'] == 1]

        if len(tdf_sub) != 2:

            continue  ### skip roads with more than two terminal nodes for now ###

        else:
            # extract coordinates of the two terminal nodes from the city nodes graph
            G_nodes_term = G_nodes[list(
                map(lambda n: n in list(tdf_sub['node'].values),
                    list(G_nodes['osmid'])))]
            coord1 = list(G_nodes_term.iloc[0, :]['geometry'].coords)[0]
            coord2 = list(G_nodes_term.iloc[1, :]['geometry'].coords)[0]
            p1 = coord1[1], coord1[0]
            p2 = coord2[1], coord2[0]

            # calculate shortest Distance between two nodes
            d_d = vincenty(p1, p2).meters
            # calculate actual route Length
            d_l = df_road['length'].astype('float', error='coerce').sum()
            # calculate sinuosity
            sinu = d_l / d_d

            # append all values to lists
            rnames.append(r)  # road name
            dist_d.append(d_d)  # shortest Distance
            dist_l.append(d_l)  # actual Length
            sinuosity.append(sinu)  #sinuosity

    # create a dataframe with sinuosity data
    df_sinu = pd.DataFrame({
        'name': rnames,
        'distance': dist_d,
        'length': dist_l,
        'sinuosity': sinuosity
    })

    # calculate straightest and curviest roads
    straight = df_sinu.sort_values('sinuosity', ascending=True).head(limit)
    curve = df_sinu.sort_values('sinuosity', ascending=False).head(limit)

    straight_0 = straight.iloc[0]
    curve_0 = curve.iloc[0]

    # print out output
    print('Shortest road: {:s} ({:.2f} meters)\n'.format(
        short.iloc[0]['name'], short.iloc[0]['length']))
    print(short, "\n")
    print('Longest road: {:s} ({:.2f} meters)\n'.format(
        long.iloc[0]['name'], long.iloc[0]['length']))
    print(long, "\n")
    print(
        'Straightest road: {:s}\nroad dist.: {:.2f}\nshortest dist.: {:.2f}\nsinuosity: {:.5f}\n'
        .format(straight.iloc[0]['name'], straight.iloc[0]['length'],
                straight.iloc[0]['distance'], straight.iloc[0]['sinuosity']))
    print(straight, "\n")
    print(
        'Curviest road: {:s}\nroad dist.: {:.2f}\nshortest dist.: {:.2f}\nsinuosity: {:.5f}\n'
        .format(curve.iloc[0]['name'], curve.iloc[0]['length'],
                curve.iloc[0]['distance'], curve.iloc[0]['sinuosity']))
    print(curve, "\n")

    # plot the graph of the area
    fig, ax = pl.subplots(figsize=(10, 10))
    G_edges.plot(color='silver', ax=ax)

    G_edges[G_edges['name'] == straight.iloc[0]['name']].plot(
        color='limegreen', ax=ax, label='straightest')
    G_edges[G_edges['name'] == curve.iloc[0]['name']].plot(color='gold',
                                                           ax=ax,
                                                           label='curviest')
    G_edges[G_edges['name'] == short.iloc[0]['name']].plot(color='steelblue',
                                                           ax=ax,
                                                           label='shortest')
    G_edges[G_edges['name'] == long.iloc[0]['name']].plot(color='indianred',
                                                          ax=ax,
                                                          label='longest')

    pl.legend(fontsize='medium')
    pl.show()
コード例 #29
0
def download_osm_networks(
    output_dir,
    polygon=None,
    bbox=None,
    data_crs=None,
    net_types=["drive", "walk", "bike"],
    pickle_save=False,
    suffix="",
    overwrite=False
):
    """
    Download an OpenStreetMap network within the area defined by a polygon
    feature class or a bounding box.

    Args:
        output_dir (str): Path, Path to output directory. Each modal network (specified by `net_types`)
                is saved to this directory within an epoynmous folder  as a shape file.
                If `pickle_save` is True, pickled graph objects are also stored in this directory in the
                appropriate subfolders.
        polygon (str): Path, default=None; Path to study area polygon(s) shapefile. If provided, the polygon
                features define the area from which to fetch OSM features and `bbox` is ignored.
                See module notes for performance and suggestions on usage.
        bbox (dict): default=None; A dictionary with keys 'south', 'west', 'north', and 'east' of
                EPSG:4326-style coordinates, defining a bounding box for the area from which to
                fetch OSM features. Only required when `study_area_polygon_path` is not provided.
                See module notes for performance and suggestions on usage.
        data_crs (int): integer value representing an EPSG code
        net_types (list): [String,...], default=["drive", "walk", "bike"]
                A list containing any or all of "drive", "walk", or "bike", specifying
                the desired OSM network features to be downloaded.
        pickle_save (bool): default=False; If True, the downloaded OSM networks are saved as
                python `networkx` objects using the `pickle` module. See module notes for usage.
        suffix (str): default=""; Downloaded datasets may optionally be stored in folders with
                a suffix appended, differentiating networks by date, for example.
        overwrite (bool): if set to True, delete the existing copy of the network(s)
    
    Returns:
        G (dict): A dictionary of networkx graph objects. Keys are mode names based on
                `net_types`; values are graph objects.
    """
    # Validation of inputs
    # TODO: separate polygon and bbox validation
    bounding_box = validate_inputs(
        study_area_poly=polygon, bbox=bbox, data_crs=data_crs
    )

    # - ensure Network types are valid and formatted correctly
    net_types = validate_network_types(network_types=net_types)

    output_dir = validate_directory(output_dir)

    # Fetch network features
    mode_nets = {}
    for net_type in net_types:
        print("")
        net_folder = f"{net_type}_{suffix}"
        print(f"OSMnx '{net_type.upper()}' network extraction")
        print("-- extracting a composed network by bounding box...")
        g = ox.graph_from_bbox(
            north=bounding_box["north"],
            south=bounding_box["south"],
            east=bounding_box["east"],
            west=bounding_box["west"],
            network_type=net_type,
            retain_all=True,
        )
        if net_type in ["walk", "bike"]:
            g = dl_help.trim_components(graph=g)

        # Pickle if requested
        if pickle_save:
            print("-- saving the composed network as pickle")
            out_f = os.path.join(output_dir, net_folder, "osmnx_composed_net.p")
            with open(out_f, "wb") as pickle_file:
                pickle.dump(g, pickle_file)
            print("---- saved to: {}".format(out_f))

        # 2. Saving as shapefile
        print("-- saving network shapefile...")
        out_f = os.path.join(output_dir, net_folder)
        check_overwrite_path(output=out_f, overwrite=overwrite)
        ox.save_graph_shapefile(G=g, filepath=out_f)
        # need to change this directory
        print("---- saved to: " + out_f)

        # 3. Add the final graph to the dictionary of networks
        mode_nets[net_type] = g
    return mode_nets
コード例 #30
0
ファイル: 06_infer_speed.py プロジェクト: xiaolingis/cresi
def infer_travel_time(params):
    '''Get an estimate of the average speed and travel time of each edge
    in the graph from the mask and conversion dictionary
    For each edge, get the geometry in pixel coords
      For each point, get the neareast neighbors in the maks and infer 
      the local speed'''

    G_, mask, conv_dict, min_z, dx, dy, \
                      percentile, \
                      max_speed_band, use_weighted_mean, \
                      variable_edge_speed, \
                      verbose, \
                      out_file,\
                      save_shapefiles, im_root, graph_dir_out \
    = params
    print("im_root:", im_root)

    mph_to_mps = 0.44704  # miles per hour to meters per second
    pickle_protocol = 4

    for i, (u, v, edge_data) in enumerate(G_.edges(data=True)):
        if verbose:  #(i % 100) == 0:
            logger1.info("\n" + str(i) + " " + str(u) + " " + str(v) + " " \
                         + str(edge_data))
        if (i % 1000) == 0:
            logger1.info(str(i) + " / " + str(len(G_.edges())) + " edges")

        tot_hours, mean_speed_mph, length_miles = \
                get_edge_time_properties(mask, edge_data, conv_dict,
                             min_z=min_z, dx=dx, dy=dy,
                             percentile=percentile,
                             max_speed_band=max_speed_band,
                             use_weighted_mean=use_weighted_mean,
                             variable_edge_speed=variable_edge_speed,
                             verbose=verbose)
        # update edges
        edge_data['Travel Time (h)'] = tot_hours
        edge_data['inferred_speed_mph'] = np.round(mean_speed_mph, 2)
        edge_data['length_miles'] = length_miles
        edge_data['inferred_speed_mps'] = np.round(mean_speed_mph * mph_to_mps,
                                                   2)
        edge_data['travel_time_s'] = np.round(3600. * tot_hours, 3)
        # edge_data['travel_time'] = np.round(3600. * tot_hours, 3)

    G = G_.to_undirected()
    # save graph
    #logger1.info("Saving graph to directory: " + graph_dir)
    #out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle')
    nx.write_gpickle(G, out_file, protocol=pickle_protocol)

    # save shapefile as well?
    if save_shapefiles:
        # print("save shapefiles")
        # print("current crs:", G.graph['crs'])
        G_out = G
        logger1.info("Saving shapefile to directory: {}".format(graph_dir_out))
        ox.save_graph_shapefile(G_out,
                                filename=im_root,
                                folder=graph_dir_out,
                                encoding='utf-8')

    return G_
コード例 #31
0
def simple_get_roads(config, mapfp):
    """
    Use osmnx to get a simplified version of open street maps for the city
    Writes osm_nodes and osm_ways shapefiles to mapfp
    Args:
        config object
    Returns:
        None
        This function creates the following files
           features.geojson - traffic signals, crosswalks and intersections
           osm_ways.shp - the simplified road network
           osm_nodes.shp - the intersections and dead ends
    """

    ox.settings.useful_tags_path.append('cycleway')
    G1 = get_graph(config)
    G = ox.simplify_graph(G1)

    # Label endpoints
    streets_per_node = ox.count_streets_per_node(G)
    for node, count in list(streets_per_node.items()):
        if count <= 1:
            G.nodes()[node]['dead_end'] = True
            G1.nodes()[node]['dead_end'] = True

    # osmnx creates a directory for the nodes and edges
    # Store all nodes, since they can be other features

    # Get relevant node features out of the unsimplified graph
    nodes, data = zip(*G1.nodes(data=True))
    gdf_nodes = geopandas.GeoDataFrame(list(data), index=nodes)
    node_feats = gdf_nodes[gdf_nodes['highway'].isin(
        ['crossing', 'traffic_signals'])]
    intersections = gdf_nodes[gdf_nodes['dead_end'] == True]

    names = {'traffic_signals': 'signal', 'crossing': 'crosswalk'}
    features = []
    for _, row in node_feats.iterrows():
        features.append(
            geojson.Feature(
                geometry=geojson.Point((row['x'], row['y'])),
                id=row['osmid'],
                properties={'feature': names[row['highway']]},
            ))
    for _, row in intersections.iterrows():
        features.append(
            geojson.Feature(
                geometry=geojson.Point((row['x'], row['y'])),
                id=row['osmid'],
                properties={'feature': 'intersection'},
            ))

    features = geojson.FeatureCollection(features)

    with open(os.path.join(mapfp, 'features.geojson'), "w") as f:
        json.dump(features, f)

    # Store simplified network
    ox.save_graph_shapefile(G, filename='temp', folder=mapfp)

    # Copy and remove temp directory
    tempdir = os.path.join(mapfp, 'temp')
    for filename in os.listdir(os.path.join(tempdir, 'edges')):
        _, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'edges', filename),
                    os.path.join(mapfp, 'osm_ways.' + extension))
    for filename in os.listdir(os.path.join(tempdir, 'nodes')):
        _, extension = filename.split('.')
        shutil.move(os.path.join(tempdir, 'nodes', filename),
                    os.path.join(mapfp, 'osm_nodes.' + extension))
    shutil.rmtree(tempdir)
コード例 #32
0
ファイル: plot_osmnx.py プロジェクト: takato86/networkx
# impute edge (driving) speeds and calculate edge traversal times
G = ox.add_edge_speeds(G)
G = ox.add_edge_travel_times(G)

# you can convert MultiDiGraph to/from geopandas GeoDataFrames
gdf_nodes, gdf_edges = ox.graph_to_gdfs(G)
G = ox.graph_from_gdfs(gdf_nodes, gdf_edges, graph_attrs=G.graph)

# convert MultiDiGraph to DiGraph to use nx.betweenness_centrality function
# choose between parallel edges by minimizing travel_time attribute value
D = ox.utils_graph.get_digraph(G, weight="travel_time")

# calculate node betweenness centrality, weighted by travel time
bc = nx.betweenness_centrality(D, weight="travel_time", normalized=True)
nx.set_node_attributes(G, values=bc, name="bc")

# plot the graph, coloring nodes by betweenness centrality
nc = ox.plot.get_node_colors_by_attr(G, "bc", cmap="plasma")
fig, ax = ox.plot_graph(G,
                        bgcolor="k",
                        node_color=nc,
                        node_size=50,
                        edge_linewidth=2,
                        edge_color="#333333")

# save graph to shapefile, geopackage, or graphml
ox.save_graph_shapefile(G, filepath="./graph_shapefile/")
ox.save_graph_geopackage(G, filepath="./graph.gpkg")
ox.save_graphml(G, filepath="./graph.graphml")
コード例 #33
0
import networkx as nx
import osmnx as ox
import requests
import matplotlib.cm as cm
import matplotlib.colors as colors
ox.config(use_cache=True, log_console=False)		# Enable cache for storing json data and enable console output for debugging
#ox.__version__



# get a graph for some city
G = ox.graph_from_place('Winter Haven, Florida, USA', network_type='all_private')
fig, ax = ox.plot_graph(G, node_size=10, node_color='#66cc66')
ox.save_graph_shapefile(G, filename='wh.jpg')
width = fig.dpi
height = fig.dpi
print("Height is "+str(height)+" Width is "+str(width))

# Determine the area in square meters
G_proj = ox.project_graph(G)
nodes_proj = ox.graph_to_gdfs(G_proj, edges = False);
area_meters = nodes_proj.unary_union.convex_hull.area
print("Area = " + str(area_meters));
def add_travel_time_img(image_name,
                        pickle_protocol,
                        graph_dir,
                        mask_dir,
                        conv_dict,
                        graph_dir_out,
                        min_z=128,
                        dx=4,
                        dy=4,
                        percentile=90,
                        use_totband=True,
                        use_weighted_mean=True,
                        variable_edge_speed=False,
                        mask_prefix='',
                        save_shapefiles=True,
                        verbose=False):
    im_root = image_name.split('.')[0]
    if len(mask_prefix) > 0:
        im_root = im_root.split(mask_prefix)[-1]
    out_file = os.path.join(graph_dir_out, im_root + '.gpickle')

    # if (i % 1) == 0:
    # logger1.info("\n" + str(1) + " / " + str(228) + " " + image_name + " " + im_root)
    mask_path = os.path.join(mask_dir, image_name)
    graph_path = os.path.join(graph_dir, im_root + '.gpickle')

    if not os.path.exists(graph_path):
        # logger1.info("  ", i, "DNE, skipping: " + str(graph_path))
        return
        # continue

    if verbose:
        logger1.info("mask_path: " + mask_path)
        logger1.info("graph_path: " + graph_path)

    mask = skimage.io.imread(mask_path)
    G_raw = nx.read_gpickle(graph_path)

    # see if it's empty
    if len(G_raw.nodes()) == 0:
        nx.write_gpickle(G_raw, out_file, protocol=pickle_protocol)
        return

    G = infer_travel_time(G_raw,
                          mask,
                          conv_dict,
                          min_z=min_z,
                          dx=dx,
                          dy=dy,
                          percentile=percentile,
                          use_totband=use_totband,
                          use_weighted_mean=use_weighted_mean,
                          variable_edge_speed=variable_edge_speed,
                          verbose=verbose)
    G = G.to_undirected()
    # save graph
    # logger1.info("Saving graph to directory: " + graph_dir)
    # out_file = os.path.join(graph_dir_out, image_name.split('.')[0] + '.gpickle')
    nx.write_gpickle(G, out_file, protocol=pickle_protocol)

    # save shapefile as well?
    if save_shapefiles:
        G_out = G  # ox.simplify_graph(G.to_directed())
        logger1.info("Saving shapefile to directory: {}".format(graph_dir_out))
        ox.save_graph_shapefile(G_out,
                                filename=im_root,
                                folder=graph_dir_out,
                                encoding='utf-8')