コード例 #1
0
ファイル: apls_utils.py プロジェクト: cuulee/apls
def createBufferGeoPandas(inGDF,
                          bufferDistanceMeters=5,
                          bufferRoundness=1,
                          projectToUTM=True):
    '''Create a buffer around the lines of the geojson'''

    # inGDF = gpd.read_file(geoJsonFileName)
    if len(inGDF) == 0:
        return []

    # Transform gdf Roadlines into UTM so that Buffer makes sense
    if projectToUTM:
        tmpGDF = osmnx_funcs.project_gdf(inGDF)
    else:
        tmpGDF = inGDF

    gdf_utm_buffer = tmpGDF

    # perform Buffer to produce polygons from Line Segments
    gdf_utm_buffer['geometry'] = tmpGDF.buffer(bufferDistanceMeters,
                                               bufferRoundness)

    gdf_utm_dissolve = gdf_utm_buffer.dissolve(by='class')
    gdf_utm_dissolve.crs = gdf_utm_buffer.crs

    if projectToUTM:
        gdf_buffer = gdf_utm_dissolve.to_crs(inGDF.crs)
    else:
        gdf_buffer = gdf_utm_dissolve

    return gdf_buffer
コード例 #2
0
ファイル: apls_utils.py プロジェクト: antran89/apls
def create_speed_gdf_v0(image_path,
                        geojson_path,
                        mask_path_out_gray,
                        bin_conversion_func,
                        mask_burn_val_key='burnValue',
                        buffer_distance_meters=2,
                        buffer_cap_style=1,
                        dissolve_by='speed_m/s',
                        bin_conversion_key='speed_mph',
                        verbose=False):
    '''
    Create buffer around geojson for speeds, use bin_conversion_func to
    assign values to the mask
    '''

    # get gdf_buffer
    try:
        inGDF = gpd.read_file(geojson_path)
    except:
        print("Empty mask for path:", geojson_path)
        # create emty mask
        h, w = cv2.imread(image_path, 0).shape[:2]
        mask_gray = np.zeros((h, w)).astype(np.uint8)
        skimage.io.imsave(mask_path_out_gray, mask_gray)
        # cv2.imwrite(mask_path_out, mask_gray)
        return []

    # project
    projGDF = osmnx_funcs.project_gdf(inGDF)
    if verbose:
        print("inGDF.columns:", inGDF.columns)

    gdf_utm_buffer = projGDF.copy()
    # perform Buffer to produce polygons from Line Segments
    gdf_utm_buffer['geometry'] = gdf_utm_buffer.buffer(buffer_distance_meters,
                                                       buffer_cap_style)
    gdf_utm_dissolve = gdf_utm_buffer.dissolve(by=dissolve_by)
    gdf_utm_dissolve.crs = gdf_utm_buffer.crs
    gdf_buffer = gdf_utm_dissolve.to_crs(inGDF.crs)
    if verbose:
        print("gdf_buffer['geometry'].values[0]:",
              gdf_buffer['geometry'].values[0])

    # set burn values
    speed_arr = gdf_buffer[bin_conversion_key].values
    burnVals = [bin_conversion_func(s) for s in speed_arr]
    gdf_buffer[mask_burn_val_key] = burnVals

    # create mask
    gdf_to_array(gdf_buffer,
                 image_path,
                 mask_path_out_gray,
                 mask_burn_val_key=mask_burn_val_key,
                 verbose=verbose)

    return gdf_buffer
コード例 #3
0
ファイル: road_speed.py プロジェクト: xian1234/cresi
def create_speed_gdf(image_path, geojson_path, mask_path_out_gray,
                     bin_conversion_func, mask_burn_val_key='burnValue',
                     buffer_distance_meters=2, buffer_roundness=1,
                     dissolve_by='inferred_speed_mps',  # 'speed_m/s', 
                     bin_conversion_key='speed_mph',
                     # crs={'init': 'epsg:4326'},
                     zero_frac_thresh=0.05,
                     verbose=False):

    '''Create buffer around geojson for speeds, use bin_conversion_func to
    assign values to the mask'''

    # get gdf_buffer
    try:
        inGDF = gpd.read_file(geojson_path)
    except:
        print("Can't read geojson:", geojson_path)
        # create emty mask
        h, w = skimage.io.imread(image_path).shape[:2]
        #h, w = cv2.imread(image_path, 0).shape[:2]
        mask_gray = np.zeros((h, w)).astype(np.uint8)
        skimage.io.imsave(mask_path_out_gray, mask_gray)
        # cv2.imwrite(mask_path_out, mask_gray)
        return []

    if len(inGDF) == 0:
        print("Empty mask for path:", geojson_path)
        # create emty mask
        h, w = skimage.io.imread(image_path).shape[:2]  
        # h, w = cv2.imread(image_path, 0).shape[:2]
        mask_gray = np.zeros((h, w)).astype(np.uint8)
        skimage.io.imsave(mask_path_out_gray, mask_gray)
        # cv2.imwrite(mask_path_out, mask_gray)
        return []
        
    # project
    projGDF = osmnx_funcs.project_gdf(inGDF) #, to_crs=crs)
    if verbose:
        print("inGDF.columns:", inGDF.columns)

    gdf_utm_buffer = projGDF.copy()
    # perform Buffer to produce polygons from Line Segments
    gdf_utm_buffer['geometry'] = gdf_utm_buffer.buffer(buffer_distance_meters,
                                                       buffer_roundness)
    gdf_utm_dissolve = gdf_utm_buffer.dissolve(by=dissolve_by)
    gdf_utm_dissolve.crs = gdf_utm_buffer.crs
    gdf_buffer = gdf_utm_dissolve.to_crs(inGDF.crs)
    if verbose:
        print("gdf_buffer['geometry'].values[0]:",
              gdf_buffer['geometry'].values[0])

    # set burn values
    speed_arr = gdf_buffer[bin_conversion_key].values
    burnVals = [bin_conversion_func(s) for s in speed_arr]
    gdf_buffer[mask_burn_val_key] = burnVals

    # create mask
    gdf_to_array(gdf_buffer, image_path, mask_path_out_gray,
                            mask_burn_val_key=mask_burn_val_key,
                            verbose=verbose)

    # check to ensure no mask outside the image pixels (some images are
    # largely black)
    im_bgr = skimage.io.imread(image_path)
    # im_bgr = cv2.imread(image_path, 1)
    try: 
        im_gray = np.sum(im_bgr, axis=2)
        # check if im_gray is more than X percent black
        zero_frac = 1. - float(np.count_nonzero(im_gray)) / im_gray.size
        if zero_frac >= zero_frac_thresh:
            print("zero_frac:", zero_frac)
            print("create_speed_gdf(): checking to ensure masks are null where "
                  "image is null")
            # ensure the label doesn't extend beyond the image
            mask_gray = cv2.imread(mask_path_out_gray, 0)
            zero_locs = np.where(im_gray == 0)
            # set mask_gray to zero at location of zero_locs
            mask_gray[zero_locs] = 0
            # overwrite
            cv2.imwrite(mask_path_out_gray, mask_gray)
    except:
        # something is wrong with the image...
        pass 
        # h0, w0 = 100, 100
        # mask_gray = np.zeros((h0, w0)).astype(np.uint8)
        # skimage.io.imsave(mask_path_out_gray, mask_gray)

    return gdf_buffer
コード例 #4
0
ファイル: apls_utils.py プロジェクト: antran89/apls
def create_buffer_geopandas(inGDF,
                            buffer_distance_meters=2,
                            buffer_cap_style=1,
                            dissolve_by='class',
                            projectToUTM=True,
                            verbose=False):
    """
    Create a buffer around the lines of the geojson

    Arguments
    ---------
    inGDF : geodataframe
        Geodataframe from a SpaceNet geojson.
    buffer_distance_meters : float
        Width of buffer around geojson lines.  Formally, this is the distance
        to each geometric object.  Optional.  Defaults to ``2``.
    buffer_cap_style : int
        Cap_style of buffer, see: (https://shapely.readthedocs.io/en/stable/manual.html#constructive-methods)
        Defaults to ``1`` (round).
    dissolve_by : str
        Method for differentiating rows in geodataframe, and creating unique
        mask values.  Defaults to ``'class'``.
    projectToUTM : bool
        Switch to project gdf to UTM coordinates. Defaults to ``True``.
    verbose : bool
        Switch to print relevant values.  Defaults to ``False``.

    Returns
    -------
    gdf_buffer : geopandas dataframe
        Dataframe created from geojson

    """

    # inGDF = gpd.read_file(geoJsonFileName)
    if len(inGDF) == 0:
        return []

    # if we want a geojson instead of gdf for input
    # try:
    #    inGDF = gpd.read_file(geoJsonFileName)
    # except:
    #    return []

    # Transform gdf Roadlines into UTM so that Buffer makes sense
    if projectToUTM:
        tmpGDF = osmnx_funcs.project_gdf(inGDF, inGDF.crs)
    else:
        tmpGDF = inGDF

    if verbose:
        print("inGDF.columns:", tmpGDF.columns)
    gdf_utm_buffer = tmpGDF.copy()

    # perform Buffer to produce polygons from Line Segments
    gdf_utm_buffer['geometry'] = tmpGDF.buffer(buffer_distance_meters,
                                               cap_style=buffer_cap_style)

    gdf_utm_dissolve = gdf_utm_buffer.dissolve(by=dissolve_by)
    gdf_utm_dissolve.crs = gdf_utm_buffer.crs
    if projectToUTM:
        gdf_buffer = gdf_utm_dissolve.to_crs(inGDF.crs)
    else:
        gdf_buffer = gdf_utm_dissolve
    if verbose:
        print("gdf_buffer['geometry'].values[0]:",
              gdf_buffer['geometry'].values[0])

    # add the dissolve_by column back into final gdf, since it's now the index
    gdf_buffer[dissolve_by] = gdf_buffer.index.values

    return gdf_buffer