コード例 #1
0
def test_expopol2D():

    logger = getLogger('test_expopol2D')

    logger.info(
        'Test ExpoPol2D_pdf: Exponential times exponential modulated by positive polynomial in X and Y '
    )

    ## "fictive phase space"
    model = Models.ExpoPol2D_pdf('EP', m_x, m_y, nx=2, ny=2)

    with rooSilent():
        result, f = model.fitTo(dataset)
    with use_canvas('test_expopol2D'):
        with wait(1):
            model.draw1(dataset)
        with wait(1):
            model.draw2(dataset)

    result, f = model.fitTo(dataset, silent=True)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print(result)
    else:
        logger.info('Bernstein Coefficients:\n%s' % model.pars())

    models.add(model)
コード例 #2
0
def test_pbxpb_BB  () :
    logger.info ('Non-factorizeable background component:  ( Gauss + expo*P1 ) (x) ( Gauss + expo*P1 ) + (expo*P1)**2')
    model   = Models.Fit2D (
        suffix   = '_7' , 
        signal_x = signal1  ,
        signal_y = signal2s ,
        bkg_1x     = 1 , 
        bkg_1y     = 1 ,
        bkg_2D    = Models.ExpoPol2D_pdf ( 'P2D7' , m_x , m_y , nx = 1 , ny = 1 ) 
        )
    
    model.bkg_1x   .tau  .fix ( 0 )
    model.bkg_1y   .tau  .fix ( 0 )

    ## fit with fixed mass and sigma
    with rooSilent() : 
        result, frame = model. fitTo ( dataset )
        model.signal_x.sigma.release () 
        model.signal_y.sigma.release ()
        model.signal_x.mean .release () 
        model.signal_y.mean .release () 
        result, frame = model. fitTo ( dataset )

    if 0 != result.status() or 3 != result.covQual() :
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d '
                       % ( result.status() , result.covQual()  ) )
        print(result)
    else :
        logger.info ('S1xS2 : %20s' % result ( model.SS ) [0]    )
        logger.info ('S1xB2 : %20s' % result ( model.SB ) [0]    )
        logger.info ('B1xS2 : %20s' % result ( model.BS ) [0]    )
        logger.info ('B1xB2 : %20s' % result ( model.BB ) [0]    )

    models.add ( model ) 
コード例 #3
0
def test_pbxpb_BB():
    logger.info(
        'Non-factorizeable background component:  ( Gauss + expo*P1 ) (x) ( Gauss + expo*P1 ) + (expo*P1)**2'
    )
    model = Models.Fit2D(suffix='_7',
                         signal_1=Models.Gauss_pdf('Gx',
                                                   m_x.getMin(),
                                                   m_x.getMax(),
                                                   mass=m_x),
                         signal_2=Models.Gauss_pdf('Gy',
                                                   m_y.getMin(),
                                                   m_y.getMax(),
                                                   mass=m_y),
                         power1=1,
                         power2=1,
                         bkg2D=Models.ExpoPol2D_pdf('P2D7',
                                                    m_x,
                                                    m_y,
                                                    nx=1,
                                                    ny=1))

    model.signal1.sigma.fix(m.error())
    model.signal2.sigma.fix(m.error())
    model.signal1.mean.fix(m.value())
    model.signal2.mean.fix(m.value())
    model.signal1.mean.fix(m.value())
    model.signal2.mean.fix(m.value())
    model.bkg1.tau.fix(0)
    model.bkg2.tau.fix(0)

    ## fit with fixed mass and sigma
    with rooSilent():
        result, frame = model.fitTo(dataset)
        model.signal1.sigma.release()
        model.signal2.sigma.release()
        model.signal1.mean.release()
        model.signal2.mean.release()
        result, frame = model.fitTo(dataset)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print result
    else:
        logger.info('S1xS2 : %20s' % result(model.ss)[0])
        logger.info('S1xB2 : %20s' % result(model.sb)[0])
        logger.info('B1xS2 : %20s' % result(model.bs)[0])
        logger.info('B1xB2 : %20s' % result(model.bb)[0])

    models.add(model)