コード例 #1
0
def test_spline2D() :
    
    logger.info ('Test Spline2D_pdf : 2D-spline')
    
    s1 = Ostap.Math.BSpline          ( m_x.xmin(), m_x.xmax() , 1 , 2 ) 
    s2 = Ostap.Math.BSpline          ( m_y.xmin(), m_y.xmax() , 1 , 2 ) 
    s3 = Ostap.Math.PositiveSpline2D ( s1 , s2 )
    
    model = Models.Spline2D_pdf ( 'S2D' , m_x , m_y, s3 )
    
    model = Models.ExpoPol2Dsym_pdf ( 'S2DS',
                                      m_x   ,
                                      m_y  ,
                                      n = 2 )
    
    with rooSilent() : 
        result, f = model.fitTo ( dataset ) 
        model.draw1 ( dataset )        
        model.draw2 ( dataset )
        
    result, f = model.fitTo ( dataset , silent = True )
        
    if 0 != result.status() or 3 != result.covQual() :
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % ( result.status() , result.covQual () ) )
        print(result)
       
    models.add ( model )
コード例 #2
0
def test_model_14():

    logger.info(
        'Non-factorazeable background component (spline):  ( Gauss + expo*P1 ) (x) ( Gauss + expo*P1 ) + Spline2D'
    )
    SPLINE = Ostap.Math.Spline2D(spline1, spline1)
    model = Models.Fit2D(suffix='_14',
                         signal_1=Models.Gauss_pdf('Gx',
                                                   m_x.getMin(),
                                                   m_x.getMax(),
                                                   mass=m_x),
                         signal_2=Models.Gauss_pdf('Gy',
                                                   m_y.getMin(),
                                                   m_y.getMax(),
                                                   mass=m_y),
                         power1=1,
                         power2=1,
                         bkg2D=Models.Spline2D_pdf('P2D14',
                                                   m_x,
                                                   m_y,
                                                   spline=SPLINE))

    model.signal1.sigma.fix(m.error())
    model.signal2.sigma.fix(m.error())
    model.signal1.mean.fix(m.value())
    model.signal2.mean.fix(m.value())
    model.signal1.mean.fix(m.value())
    model.signal2.mean.fix(m.value())
    model.bkg1.tau.fix(0)
    model.bkg2.tau.fix(0)

    ## fit with fixed mass and sigma
    with rooSilent():
        result, frame = model.fitTo(dataset)
        model.signal1.sigma.release()
        model.signal2.sigma.release()
        model.signal1.mean.release()
        model.signal2.mean.release()
        result, frame = model.fitTo(dataset)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print result
    else:
        logger.info('S1xS2 : %20s' % result(model.ss)[0])
        logger.info('S1xB2 : %20s' % result(model.sb)[0])
        logger.info('B1xS2 : %20s' % result(model.bs)[0])
        logger.info('B1xB2 : %20s' % result(model.bb)[0])

    models.add(model)
コード例 #3
0
def test_model_14():

    logger = getLogger('test_model_14')
    logger.info(
        'Non-factorazeable background component (spline):  ( Gauss + P1 ) (x) ( Gauss + P1 ) + Spline2D'
    )
    SPLINE = Ostap.Math.PositiveSpline2D(spline1, spline1)
    model = Models.Fit2D(suffix='_14',
                         signal_x=signal1,
                         signal_y=signal2s,
                         bkg_1x=-1,
                         bkg_1y=-1,
                         bkg_2D=Models.Spline2D_pdf('P2D14',
                                                    m_x,
                                                    m_y,
                                                    spline=SPLINE))

    ## fit with fixed mass and sigma
    with rooSilent():
        result, frame = model.fitTo(dataset)
        model.signal_x.sigma.release()
        model.signal_y.sigma.release()
        model.signal_x.mean.release()
        model.signal_y.mean.release()
        result, frame = model.fitTo(dataset)
        result, frame = model.fitTo(dataset)
    with use_canvas('test_model_14'):
        with wait(1):
            model.draw1(dataset)
        with wait(1):
            model.draw2(dataset)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print(result)
    else:

        logger.info('S1xS2 : %20s' % result(model.SS)[0])
        logger.info('S1xB2 : %20s' % result(model.SB)[0])
        logger.info('B1xS2 : %20s' % result(model.BS)[0])
        logger.info('B1xB2 : %20s' % result(model.BB)[0])

    models.add(model)
コード例 #4
0
def test_model_14():

    logger.info(
        'Non-factorazeable background component (spline):  ( Gauss + P1 ) (x) ( Gauss + P1 ) + Spline2D'
    )
    SPLINE = Ostap.Math.Spline2D(spline1, spline1)
    model = Models.Fit2D(suffix='_14',
                         signal_1=signal1,
                         signal_2=signal2s,
                         bkg1=-1,
                         bkg2=-1,
                         bkg2D=Models.Spline2D_pdf('P2D14',
                                                   m_x,
                                                   m_y,
                                                   spline=SPLINE))

    ## fit with fixed mass and sigma
    with rooSilent():
        result, frame = model.fitTo(dataset)
        model.signal1.sigma.release()
        model.signal2.sigma.release()
        model.signal1.mean.release()
        model.signal2.mean.release()
        result, frame = model.fitTo(dataset)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print result
    else:

        logger.info('S1xS2 : %20s' % result(model.SS)[0])
        logger.info('S1xB2 : %20s' % result(model.SB)[0])
        logger.info('B1xS2 : %20s' % result(model.BS)[0])
        logger.info('B1xB2 : %20s' % result(model.BB)[0])

    models.add(model)