コード例 #1
0
        def setUpClass(cls):
            cls.templates_folder = os.environ['MODEL_TEMPLATES']
            cls.template_folder = os.path.join(cls.templates_folder,
                                               domain_name, problem_name,
                                               model_name)
            skip_non_instantiated_template_if_its_allowed(
                cls.template_folder, problem_name, model_name)
            cls.template_file = os.path.join(cls.template_folder,
                                             'template.yaml')
            cls.ann_file = ann_file
            cls.img_root = img_root
            cls.dependencies = get_dependencies(cls.template_file)
            cls.epochs_delta = 1
            cls.total_epochs = get_epochs(cls.template_file) + cls.epochs_delta

            expected_outputs_json = f'{expected_outputs_dir}/{problem_name}/{model_name}.json'

            with open(expected_outputs_json) as read_file:
                cls.expected_outputs = json.load(read_file)

            download_snapshot_if_not_yet(cls.template_file,
                                         cls.template_folder)

            run_through_shell(f'cd {cls.template_folder};'
                              f'pip install -r requirements.txt;')
コード例 #2
0
        def export_test_on_cpu(self, thr):
            export_folder = 'cpu_export'
            if not os.path.exists(export_folder):
                self.do_export(export_folder)

            export_dir = os.path.join(self.template_folder, export_folder)

            run_through_shell(
                f'export CUDA_VISIBLE_DEVICES=;'
                f'cd {os.path.dirname(self.template_file)};'
                f'python eval.py'
                f' --test-ann-files {ann_file}'
                f' --test-data-roots {img_root}'
                f' --load-weights {os.path.join(export_dir, "model.bin")}'
                f' --save-metrics-to {os.path.join(export_dir, "metrics.yaml")}'
            )

            with open(os.path.join(export_dir, "metrics.yaml")) as read_file:
                content = yaml.load(read_file, yaml.SafeLoader)
                est_accuracy = [
                    metric['value'] for metric in content['metrics']
                    if metric['key'] == 'accuracy'
                ][0]

            with open(
                    f'{os.path.dirname(__file__)}/../expected_outputs/{problem_name}/{model_name}.json'
            ) as read_file:
                content = json.load(read_file)
                ref_accuracy = content['accuracy']

            self.assertGreater(1e-2 * est_accuracy, ref_accuracy - thr)
コード例 #3
0
    def _export_to_openvino(self, args, tools_dir):
        run_through_shell(f'python {os.path.join(tools_dir, "export.py")} '
                          f'{args["config"]} '
                          f'{args["load_weights"]} '
                          f'{args["save_model_to"]} '
                          f'openvino '
                          f'--input_format {args["openvino_input_format"]}')

        # FIXME(ikrylov): remove alt_ssd_export block as soon as it becomes useless.
        # (LeonidBeynenson): Please, note that alt_ssd_export appoach may be applied only
        #                    to SSD models only that were not compressed by NNCF.
        config = Config.fromfile(args["config"])
        should_run_alt_ssd_export = (hasattr(config.model, 'bbox_head') and
                                     config.model.bbox_head.type == 'SSDHead'
                                     and not config.get('nncf_config'))

        if is_checkpoint_nncf and is_checkpoint_nncf(args['load_weights']):
            # If the config does not contain NNCF part,
            # but the checkpoint was trained with NNCF compression,
            # the NNCF config will be read from checkpoint.
            # Since alt_ssd_export is incompatible with NNCF compression,
            # alt_ssd_export should not be run in this case.
            should_run_alt_ssd_export = False

        if should_run_alt_ssd_export:
            run_through_shell(
                f'python {os.path.join(tools_dir, "export.py")} '
                f'{args["config"]} '
                f'{args["load_weights"]} '
                f'{os.path.join(args["save_model_to"], "alt_ssd_export")} '
                f'openvino '
                f'--input_format {args["openvino_input_format"]} '
                f'--alt_ssd_export ')
コード例 #4
0
 def _export_to_openvino(self, args, tools_dir):
     run_through_shell(f'python {os.path.join(tools_dir, "export.py")} '
                       f'{args["config"]} '
                       f'{args["load_weights"]} '
                       f'{args["save_model_to"]} '
                       f'openvino '
                       f'--input_format {args["openvino_input_format"]}')
コード例 #5
0
    def _export_to_openvino(self, args, tools_dir):
        update_config = self._get_update_config(args)
        run_through_shell(f'python3 {os.path.join(tools_dir, "export.py")} '
                          f'{args["config"]} '
                          f'{args["load_weights"]} '
                          f'{args["save_model_to"]} '
                          f'{update_config} '
                          f'--opset={self.opset} '
                          f'openvino '
                          f'--input_format {args["openvino_input_format"]}')

        # FIXME(ikrylov): remove alt_ssd_export block as soon as it becomes useless.
        config = Config.fromfile(args["config"])
        should_run_alt_ssd_export = (hasattr(config.model, 'bbox_head') and
                                     config.model.bbox_head.type == 'SSDHead')

        if should_run_alt_ssd_export:
            run_through_shell(
                f'python3 {os.path.join(tools_dir, "export.py")} '
                f'{args["config"]} '
                f'{args["load_weights"]} '
                f'{os.path.join(args["save_model_to"], "alt_ssd_export")} '
                f'{update_config} '
                f'--opset={self.opset} '
                f'openvino '
                f'--input_format {args["openvino_input_format"]} '
                f'--alt_ssd_export ')
コード例 #6
0
        def setUpClass(cls):
            cls.compress_cmd_line_params = compress_cmd_line_params
            cls.test_case_description = cls.generate_test_case_description(
                    template_update_dict,
                    compress_cmd_line_params,
                    compression_cfg_update_dict)
            logging.info(f'Begin setting up class for {problem_name}/{model_name}, {cls.test_case_description}')

            cls.templates_folder = os.environ['MODEL_TEMPLATES']
            cls.src_template_folder = os.path.join(cls.templates_folder,domain_name, problem_name, model_name)

            skip_non_instantiated_template_if_its_allowed(cls.src_template_folder, problem_name, model_name)

            src_template_file = os.path.join(cls.src_template_folder, 'template.yaml')
            download_snapshot_if_not_yet(src_template_file, cls.src_template_folder)

            cls.template_folder = cls.generate_template_folder_name(cls.src_template_folder,
                                                                    cls.test_case_description)
            cls.copy_template_folder(cls.src_template_folder, cls.template_folder)

            cls.template_file = os.path.join(cls.template_folder, 'template.yaml')
            cls.apply_update_dict_params_to_template_file(cls.template_file,
                                                          template_update_dict,
                                                          compression_cfg_update_dict)

            cls.ann_file = ann_file
            cls.img_root = img_root
            cls.dependencies = get_dependencies(cls.template_file)

            download_snapshot_if_not_yet(cls.template_file, cls.template_folder)

            run_through_shell(
                f'cd {cls.template_folder};'
            )
            logging.info(f'End setting up class for {problem_name}/{model_name}, {cls.test_case_description}')
コード例 #7
0
def main():
    args = parse_args()
    log_level = logging.DEBUG if args.verbose else logging.INFO
    logging.basicConfig(level=log_level)

    with open(args.template) as read_file:
        content = yaml.load(read_file, yaml.SafeLoader)

    os.makedirs(args.output, exist_ok=True)
    run_through_shell(
        f'cp -r {os.path.dirname(args.template)}/* --target-directory={args.output}',
        verbose=args.verbose)

    for dependency in content['dependencies']:
        source = dependency['source']
        destination = dependency['destination']
        if destination != 'snapshot.pth':
            rel_source = os.path.join(os.path.dirname(args.template), source)
            cur_dst = os.path.join(args.output, destination)
            os.makedirs(os.path.dirname(cur_dst), exist_ok=True)
            run_through_shell(
                f'cp -r --no-target-directory {rel_source} {cur_dst}',
                check=True,
                verbose=args.verbose)

    if not args.do_not_load_snapshot:
        download_snapshot_if_not_yet(args.template, args.output)
コード例 #8
0
        def test_evaluation_on_cpu(self):
            self.skip_if_cpu_is_not_supported()

            run_through_shell('export CUDA_VISIBLE_DEVICES=;'
                              f'cd {self.template_folder};'
                              f'python eval.py'
                              f' --test-ann-files {self.ann_file}'
                              f' --test-data-roots {self.img_root}'
                              f' --save-metrics-to metrics.yaml'
                              f' --load-weights snapshot.pth')

            with open(os.path.join(self.template_folder,
                                   "metrics.yaml")) as read_file:
                content = yaml.load(read_file, yaml.SafeLoader)

            est_accuracy = [
                metrics['value'] for metrics in content['metrics']
                if metrics['key'] == 'accuracy'
            ][0]

            with open(
                    f'{os.path.dirname(__file__)}/../expected_outputs/{problem_name}/{model_name}.json'
            ) as read_file:
                content = json.load(read_file)
                ref_accuracy = content['accuracy']

            self.assertLess(abs(ref_accuracy - 1e-2 * est_accuracy), 1e-6)
コード例 #9
0
        def test_nncf_compress_and_export(self):
            skip_if_cuda_not_available()
            log_file = self.do_compress()

            latest_file = os.path.join(self.output_folder, 'latest.pth')
            self.assertTrue(
                os.path.isfile(latest_file),
                f'Cannot find the latest.pth in path `{latest_file}`')

            run_through_shell(f'cd {os.path.dirname(self.template_file)};'
                              f'python export.py'
                              f' --load-weights {latest_file}'
                              f' --save-model-to {self.output_folder}')

            model_bin_paths = list(
                glob.glob(os.path.join(self.output_folder, '*.bin')))
            assert len(model_bin_paths) == 1, (
                f'Wrong result of export.py: globbing "*.bin" in'
                f' {self.output_folder} gives {model_bin_paths}')

            model_bin_path = model_bin_paths[0]

            metrics_path = self.do_eval(model_bin_path)

            return log_file, metrics_path
コード例 #10
0
 def do_export(self, export_dir, on_gpu):
     if not os.path.exists(export_dir):
         initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
         run_through_shell(f'{initial_command}'
                           f'cd {os.path.dirname(self.template_file)};'
                           f'python3 export.py'
                           f' --load-weights snapshot.pth'
                           f' --save-model-to {export_dir}')
コード例 #11
0
def download_and_extract_coco_val2017(coco_dir):
    val_dir = os.path.join(coco_dir, 'val2017')
    zip_file = os.path.join(coco_dir, 'val2017.zip')
    link = 'http://images.cocodataset.org/zips/val2017.zip'
    if not os.path.exists(val_dir):
        if not os.path.exists(zip_file):
            run_through_shell(f'wget --no-verbose {link} -P {coco_dir}')
        run_through_shell(f'unzip {zip_file} -d {coco_dir}')
コード例 #12
0
 def copy_template_folder(src_template_folder, template_folder):
     logging.info(f'Copying {src_template_folder} to {template_folder}')
     if os.path.isdir(template_folder):
         logging.warning('')
         logging.warning(f'ATTENTION: the folder that should be created for this test case exists!')
         logging.warning(f'           It may cause side effects between tests!')
         logging.warning(f'The folder is `{template_folder}`.\n')
     run_through_shell(f'cp -a --no-target-directory "{src_template_folder}" "{template_folder}"')
     assert os.path.isdir(template_folder), f'Cannot create {template_folder}'
コード例 #13
0
 def do_export(self, classes, on_gpu):
     initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
     run_through_shell(
         f'{initial_command}'
         f'cd {os.path.dirname(self.template_file)};'
         f'python3 export.py'
         f' --load-weights {os.path.join(self.output_folder, "latest.pth")}'
         f' --classes "{classes}"'
         f' --save-model-to {self.output_folder}')
コード例 #14
0
 def _export_to_onnx(self, args, tools_dir):
     update_config = self._get_update_config(args)
     run_through_shell(f'python3 {os.path.join(tools_dir, "export.py")} '
                       f'{args["config"]} '
                       f'{args["load_weights"]} '
                       f'{args["save_model_to"]} '
                       f'{update_config} '
                       f'--opset={self.opset} '
                       f'onnx ')
コード例 #15
0
 def do_eval(self, file_to_eval):
     metrics_path = os.path.join(self.output_folder, 'metrics.yaml')
     run_through_shell(f'cd {self.template_folder};'
                       f'python eval.py'
                       f' --test-ann-files {self.ann_file}'
                       f' --test-data-roots {self.img_root}'
                       f' --save-metrics-to {metrics_path}'
                       f' --load-weights {file_to_eval}')
     return metrics_path
        def do_evaluation(self, export_dir):
            metrics_path = os.path.join(export_dir, "metrics.yaml")
            run_through_shell(
                f'cd {os.path.dirname(self.template_file)};'
                f'python3 eval.py'
                f' --test-ann-files {self.ann_file}'
                f' --test-data-roots {self.img_root}'
                f' --load-weights {os.path.join(export_dir, "model.bin")}'
                f' --save-metrics-to {metrics_path}')

            self.assertTrue(os.path.exists(metrics_path))
        def do_evaluation(self, on_gpu):
            initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
            metrics_path = os.path.join(self.output_folder, "metrics.yaml")
            run_through_shell(f'{initial_command}'
                              f'cd {self.template_folder};'
                              f'python3 eval.py'
                              f' --test-ann-files {self.ann_file}'
                              f' --test-data-roots {self.img_root}'
                              f' --save-metrics-to {metrics_path}'
                              f' --load-weights snapshot.pth')

            self.assertTrue(os.path.exists(metrics_path))
コード例 #18
0
 def do_export(self, export_dir, on_gpu):
     if not os.path.exists(export_dir):
         initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
         run_through_shell(f'{initial_command}'
                           f'cd {os.path.dirname(self.template_file)};'
                           f'pip install -r requirements.txt;'
                           f'python3 export.py --openvino'
                           f' --load-weights snapshot.pth'
                           f' --save-model-to {export_dir}')
         self.assertTrue(
             len(list(pathlib.Path(export_dir).rglob('*.onnx'))) > 0,
             'Export to onnx failed')
         self.assertTrue(
             len(list(pathlib.Path(export_dir).rglob('*.bin'))) > 0,
             'Export to openvino failed')
コード例 #19
0
 def do_compress(self, main_weights_path, aux_weights_path):
     log_file = os.path.join(self.output_folder,
                             f'log__{self.id()}.txt')
     run_through_shell(
         f'cd {self.template_folder};'
         f'python3 compress.py'
         f' --train-ann-files {self.ann_file}'
         f' --train-data-roots {os.path.join(self.img_root, "train")}'
         f' --val-ann-files {self.ann_file}'
         f' --val-data-roots {os.path.join(self.img_root, "val")}'
         f' --save-checkpoints-to {self.output_folder}'
         f' --gpu-num 1'
         f' --load-weights {main_weights_path} --load-aux-weights {aux_weights_path}'
         + ' ' + self.compress_cmd_line_params + f' | tee {log_file}')
     return log_file
コード例 #20
0
        def do_preliminary_finetuning(self, on_gpu):
            logging.info(
                f'Looking for best models in {self.preliminary_training_folder}'
            )
            best_models = self._find_best_models(
                self.preliminary_training_folder)
            if best_models:
                logging.info(
                    f'Found already generated by preliminary finetuning the best models {best_models}'
                )
                return best_models

            logging.info(
                f'Begin making preliminary finetuning for the best models {best_models}'
            )
            self.total_epochs = 5
            log_file = os.path.join(self.output_folder, 'test_finetuning.log')
            initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
            run_through_shell(
                f'{initial_command}'
                f'cd {self.template_folder};'
                f'python3 train.py'
                f' --train-ann-files {self.ann_file}'
                f' --train-data-roots {os.path.join(self.img_root, "train")}'
                f' --val-ann-files {self.ann_file}'
                f' --val-data-roots {os.path.join(self.img_root, "val")}'
                f' --load-weights snapshot.pth'
                f' --save-checkpoints-to {self.preliminary_training_folder}'
                f' --gpu-num 1'
                f' --batch-size {self.batch_size}'
                f' --epochs {self.total_epochs}'
                f' | tee {log_file}')
            logging.info(
                f'End making preliminary finetuning for the best models {best_models}'
            )

            self.assertTrue(
                os.path.exists(
                    os.path.join(self.preliminary_training_folder,
                                 'latest.pth')))
            best_models = self._find_best_models(
                self.preliminary_training_folder)
            logging.info(
                f'Found best models in {self.preliminary_training_folder}\n best_models={best_models}'
            )
            self.assertGreater(len(best_models), 0)
            logging.info(f'Generated best_models = {best_models}')
            return best_models
コード例 #21
0
 def do_compress(self):
     log_file = os.path.join(self.output_folder,
                             f'log__{self.id()}.txt')
     run_through_shell(f'cd {self.template_folder};'
                       f'python compress.py'
                       f' --train-ann-files {self.ann_file}'
                       f' --train-data-roots {self.img_root}'
                       f' --val-ann-files {self.ann_file}'
                       f' --val-data-roots {self.img_root}'
                       f' --load-weights snapshot.pth'
                       f' --save-checkpoints-to {self.output_folder}'
                       f' --gpu-num 1'
                       f' --batch-size 1' + ' ' +
                       self.compress_cmd_line_params +
                       f' | tee {log_file}')
     return log_file
コード例 #22
0
        def setUpClass(cls):
            cls.templates_folder = os.environ['MODEL_TEMPLATES']
            cls.template_folder = os.path.join(cls.templates_folder,
                                               'action_recognition_2',
                                               problem_name, model_name)
            cls.template_file = os.path.join(cls.template_folder,
                                             'template.yaml')
            cls.ann_file = ann_file
            cls.img_root = img_root
            cls.dependencies = get_dependencies(cls.template_file)

            download_snapshot_if_not_yet(cls.template_file,
                                         cls.template_folder)

            run_through_shell(f'cd {cls.template_folder};'
                              f'pip install -r requirements.txt;')
コード例 #23
0
        def setUpClass(cls):
            cls.templates_folder = os.environ['MODEL_TEMPLATES']
            cls.template_folder = os.path.join(cls.templates_folder, domain_name, problem_name, model_name)
            skip_non_instantiated_template_if_its_allowed(cls.template_folder, problem_name, model_name)
            cls.template_file = os.path.join(cls.template_folder, 'template.yaml')
            cls.ann_file = ann_file
            cls.img_root = img_root
            cls.dependencies = get_dependencies(cls.template_file)
            cls.total_epochs = 1

            download_snapshot_if_not_yet(cls.template_file, cls.template_folder)

            run_through_shell(
                f'cd {cls.template_folder};'
                f'pip install -r requirements.txt;'
            )
コード例 #24
0
        def do_evaluation(self, export_dir):
            metrics_path = os.path.join(export_dir, "metrics.yaml")
            run_through_shell(
                f'cd {os.path.dirname(self.template_file)};'
                f'python3 eval.py'
                f' --test-ann-files {ann_file}'
                f' --test-data-roots {img_root}'
                f' --load-weights {os.path.join(export_dir, "model.bin")}'
                f' --save-metrics-to {metrics_path}'
            )

            with open(metrics_path) as read_file:
                content = yaml.safe_load(read_file)

            for metric_key in metric_keys:
                value = [metrics['value'] for metrics in content['metrics'] if metrics['key'] == metric_key][0]
                self.assertGreaterEqual(value, self.expected_outputs[metric_key] - self.test_export_thr)
コード例 #25
0
        def do_evaluation_of_exported_model(self, classes):
            metrics_path = os.path.join(self.output_folder, "metrics_exported.yaml")
            run_through_shell(
                f'cd {os.path.dirname(self.template_file)};'
                f'python3 eval.py'
                f' --test-ann-files {self.ann_file}'
                f' --test-data-roots {self.img_root}'
                f' --load-weights {os.path.join(self.output_folder, "model.bin")}'
                f' --classes "{classes}"'
                f' --save-metrics-to {metrics_path}'
            )

            with open(metrics_path) as read_file:
                content = yaml.safe_load(read_file)

            for metric_key in self.metrics:
                value = [metrics['value'] for metrics in content['metrics'] if metrics['key'] == metric_key][0]
                self.assertGreaterEqual(value, 0.0)
コード例 #26
0
        def test_finetuning_on_gpu(self):
            log_file = os.path.join(self.template_folder,
                                    'test_finetuning.log')
            run_through_shell(f'cd {self.template_folder};'
                              f'python train.py'
                              f' --train-ann-files {self.ann_file}'
                              f' --train-data-roots {self.img_root}'
                              f' --val-ann-files {self.ann_file}'
                              f' --val-data-roots {self.img_root}'
                              f' --load-weights snapshot.pth'
                              f' --save-checkpoints-to {self.template_folder}'
                              f' --gpu-num 1'
                              f' --batch-size 2'
                              f' --epochs 6'
                              f' | tee {log_file}')

            accuracy = collect_accuracy(log_file)
            self.assertGreater(accuracy[-1], 0.0)
コード例 #27
0
        def do_finetuning(self, on_gpu):
            log_file = os.path.join(self.output_folder, 'test_finetuning.log')
            initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
            run_through_shell(f'{initial_command}'
                              f'cd {self.template_folder};'
                              f'python train.py'
                              f' --train-ann-files {self.ann_file}'
                              f' --train-data-roots {self.img_root}'
                              f' --val-ann-files {self.ann_file}'
                              f' --val-data-roots {self.img_root}'
                              f' --resume-from snapshot.pth'
                              f' --save-checkpoints-to {self.output_folder}'
                              f' --gpu-num 1'
                              f' --batch-size 1'
                              f' --epochs {self.total_epochs}'
                              f' | tee {log_file}')

            self.assertTrue(
                os.path.exists(os.path.join(self.output_folder, 'latest.pth')))
コード例 #28
0
        def do_evaluation(self, on_gpu):
            initial_command = 'export CUDA_VISIBLE_DEVICES=;' if not on_gpu else ''
            metrics_path = os.path.join(self.output_folder, "metrics.yaml")
            run_through_shell(
                f'{initial_command}'
                f'cd {self.template_folder};'
                f'python3 eval.py'
                f' --test-ann-files {self.ann_file}'
                f' --test-data-roots {self.img_root}'
                f' --save-metrics-to {metrics_path}'
                f' --load-weights snapshot.pth'
            )

            with open(metrics_path) as read_file:
                content = yaml.safe_load(read_file)

            for metric_key in metric_keys:
                value = [metrics['value'] for metrics in content['metrics'] if metrics['key'] == metric_key][0]
                self.assertLess(abs(self.expected_outputs[metric_key] - value), 1e-3)
コード例 #29
0
    def _get_complexity_and_size(self, cfg, config_path, work_dir, update_config):
        image_shape = self._get_image_shape(cfg)
        tools_dir = self._get_tools_dir()

        res_complexity = os.path.join(work_dir, "complexity.json")
        update_config = ' '.join([f'{k}={v}' for k, v in update_config.items()])
        update_config = f' --update_config {update_config}' if update_config else ''
        update_config = update_config.replace('"', '\\"')
        run_through_shell(
            f'python {tools_dir}/get_flops.py'
            f' {config_path}'
            f' --shape {image_shape}'
            f' --out {res_complexity}'
            f'{update_config}')

        with open(res_complexity) as read_file:
            content = json.load(read_file)

        return content
コード例 #30
0
        def test_nncf_compress_and_export(self):
            skip_if_cuda_not_available()
            logging.info('Begin test_nncf_compress_and_export')
            best_models = self.do_preliminary_finetuning(True)
            self.assertEqual(len(best_models), 2)
            self.assertIn('model_0', best_models[0])
            self.assertIn('model_1', best_models[1])

            log_file = self.do_compress(main_weights_path=best_models[0],
                                        aux_weights_path=best_models[1])
            logging.debug('Compression is finished')
            latest_compressed_model = self._find_latest_model(
                self.output_folder)
            logging.debug(
                f'Found latest compressed models: {latest_compressed_model}')

            logging.info('Exporting the latest compressed model')
            export_dir = self.output_folder
            run_through_shell(f'cd {os.path.dirname(self.template_file)};'
                              f'python3 export.py --openvino'
                              f' --load-weights {latest_compressed_model}'
                              f' --save-model-to {export_dir}')
            onnx_res_files = find_files_by_pattern(export_dir, '*.onnx')
            xml_res_files = find_files_by_pattern(export_dir, '*.xml')
            bin_res_files = find_files_by_pattern(export_dir, '*.bin')
            self.assertTrue(len(onnx_res_files) == 1, 'Export to onnx failed')
            self.assertTrue(
                len(xml_res_files) == 1, 'Export to openvino failed')
            self.assertTrue(
                len(bin_res_files) == 1, 'Export to openvino failed')

            xml_res_file = xml_res_files[0]
            logging.debug(f'Before making evaluation of {xml_res_file}')
            metrics_path = self.do_eval(xml_res_file)
            logging.debug(f'After making evaluation of {xml_res_file}')
            logging.debug(f'    metrics are stored to the file {metrics_path}')

            logging.info('End test_nncf_compress_and_export')

            return log_file, metrics_path