コード例 #1
0
    def test_least_squares_lm(self):
        mask = create_mask(*self.D_gt.shape, strategy='single_time')
        D_sparse = self.D_gt * mask

        C_gt_vec = self.traj.coeffs.reshape((-1, ))
        cost_gt = cost_function(C_gt_vec, D_sparse, self.anchors[:2, :],
                                self.basis)
        self.assertTrue(np.sum(np.abs(cost_gt)) < eps)

        Chat = self.traj.coeffs
        x0 = Chat.copy().reshape((-1, ))
        Cref = least_squares_lm(D_sparse, self.anchors, self.basis, x0)
        self.assertLess(error_measure(Cref, self.traj.coeffs), eps)
コード例 #2
0
def add_gt_fitting(traj, times_small, points_small, current_results, n_it=0):
    # fit ground truth to chosen points.
    n_complexity = traj.n_complexity
    n_measurements = len(times_small)

    coeffs = fit_trajectory(points_small.T, times=times_small, traj=traj)
    traj_gt = traj.copy()
    traj_gt.set_coeffs(coeffs=coeffs)
    points_fitted = traj_gt.get_sampling_points(times=times_small).T

    mse = error_measure(points_fitted, points_small, 'mse')
    mae = error_measure(points_fitted, points_small, 'mae')

    current_results.loc[len(current_results)] = dict(
        plotting=(coeffs, points_fitted),
        n_complexity=n_complexity,
        n_measurements=n_measurements,
        method='gt',
        n_it=n_it,
        mae=mae,
        mse=mse,
        cost_rls=None,
        cost_srls=None)
    return points_fitted
コード例 #3
0
def plot_complexities(traj,
                      times,
                      results,
                      points_gt=None,
                      ax=None,
                      verbose=False):
    """ Create complexity plots.

    :param results: results dict of form {
      'label1': (coeffs1, points1(if applicable)), 
      'label2': (coeffs2, points2(if applicable))
    }
    :param points_gt: points of shape (N x dim).
        
    """
    from other_algorithms import error_measure
    if ax is None:
        fig, ax = plt.subplots()

    if points_gt is not None:
        assert points_gt.shape[1] == traj.dim
        ax.plot(points_gt[:, 0],
                points_gt[:, 1],
                color='black',
                ls=':',
                linewidth=1.,
                label='GPS')

    i = 0
    measure = 'mse'
    for label, (Chat, points) in results.items():
        color = f'C{i}'
        i += 1
        if Chat is not None:
            traj.set_coeffs(coeffs=Chat)
            traj.plot_pretty(times=times, color=color, label=label, ax=ax)

            if verbose:
                points_est = traj.get_sampling_points(times=times).T
                err = error_measure(points_gt, points_est, measure=measure)
                print(f'{label} {measure} from coeffs: {err:.2e}')

        if points is not None:
            for x in points:
                ax.scatter(*x, color=color, label=label, s=4.0)
                label = None
    remove_ticks(ax)
    return ax
コード例 #4
0
def generate_results(traj,
                     D_small,
                     times_small,
                     anchors,
                     points_small,
                     methods=METHODS,
                     n_it=0):
    n_complexity = traj.n_complexity
    n_measurements = np.sum(D_small > 0)
    current_results = pd.DataFrame(columns=[
        'n_it', 'n_complexity', 'n_measurements', 'mae', 'mse', 'method',
        'plotting', 'cost_rls', 'cost_srls'
    ])

    basis_small = traj.get_basis(times=times_small)

    for method in methods:
        C_hat, p_hat, lat_idx = apply_algorithm(traj,
                                                D_small,
                                                times_small,
                                                anchors,
                                                method=method)
        plotting = (C_hat, p_hat)
        mae = mse = cost_rls = cost_slrs = None
        if C_hat is not None:
            traj.set_coeffs(coeffs=C_hat)
            p_fitted = traj.get_sampling_points(times=times_small).T
            mae = error_measure(p_fitted, points_small, 'mae')
            mse = error_measure(p_fitted, points_small, 'mse')
            cost_rls = np.sum(
                cost_function(C_hat.reshape((-1, )),
                              D_small,
                              anchors,
                              basis_small,
                              squared=False))
            cost_srls = np.sum(
                cost_function(C_hat.reshape((-1, )),
                              D_small,
                              anchors,
                              basis_small,
                              squared=True))
        current_results.loc[len(current_results)] = dict(
            plotting=plotting,
            n_complexity=n_complexity,
            n_measurements=n_measurements,
            method=method,
            n_it=n_it,
            mae=mae,
            mse=mse,
            cost_rls=cost_rls,
            cost_srls=cost_srls)

        # do raw version if applicable
        if method in ['rls', 'srls']:
            points_small_lat = points_small[lat_idx]
            mae = error_measure(p_hat, points_small_lat, 'mae')
            mse = error_measure(p_hat, points_small_lat, 'mse')
            current_results.loc[len(current_results)] = dict(
                plotting=(None, None),
                n_complexity=n_complexity,
                n_measurements=n_measurements,
                method=method + ' raw',
                n_it=n_it,
                mae=mae,
                mse=mse,
                cost_rls=cost_rls,
                cost_srls=cost_srls)
    return current_results