def _load_data(): # load CIFAR10 data (target_data, _), (test_target_data, _) = cifar10.load_data() # input image dimensions # we assume data format "channels_last" rows = target_data.shape[1] cols = target_data.shape[2] channels = target_data.shape[3] # convert color train and test images to gray source_data = other_utils.rgb2gray(target_data) test_source_data = other_utils.rgb2gray(test_target_data) # display color version of test images imgs = test_target_data[:100] title = 'CIFAR10 test color images (Ground Truth)' img_shape = (rows, cols, channels) filename = 'test_color.png' other_utils.display_images(imgs, img_shape=img_shape, filename=filename, title=title) # display grayscale version of test images imgs = test_source_data[:100] title = 'CIFAR10 test gray images (Input)' filename = 'test_gray.png' other_utils.display_images(imgs, img_shape=(rows, cols, 1), filename=filename, title=title) # normalize output train and test color images target_data = target_data.astype('float32') / 255 test_target_data = test_target_data.astype('float32') / 255 # normalize input train and test grayscale images source_data = source_data.astype('float32') / 255 test_source_data = test_source_data.astype('float32') / 255 # reshape images to row x col x channels # for CNN output/validation target_data = target_data.reshape(target_data.shape[0], rows, cols, channels) test_target_data = test_target_data.reshape(test_target_data.shape[0], rows, cols, channels) # reshape images to row x col x channel for CNN input source_data = source_data.reshape(source_data.shape[0], rows, cols, 1) test_source_data = test_source_data.reshape(test_source_data.shape[0], rows, cols, 1) # source data, target data, test_source data data = (source_data, target_data, test_source_data, test_target_data) source_shape = (rows, cols, 1) target_shape = (rows, cols, channels) shapes = (source_shape, target_shape) return data, shapes
def load_data(): # load CIFAR10 data (x_train, _), (x_test, _) = cifar10.load_data() # input image dimensions # we assume data format "channels_last" rows = x_train.shape[1] cols = x_train.shape[2] channels = x_train.shape[3] # convert color train and test images to gray x_train_gray = other_utils.rgb2gray(x_train) x_test_gray = other_utils.rgb2gray(x_test) # display color version of test images imgs = x_test[:100] title = 'Test color images (Ground Truth)' img_shape = (rows, cols, channels) filename = 'test_color.png' other_utils.display_images(imgs, img_shape=img_shape, filename=filename, title=title) # display grayscale version of test images imgs = x_test_gray[:100] title = 'Test gray images (Input)' filename = 'test_gray.png' other_utils.display_images(imgs, img_shape=(rows, cols, 1), filename=filename, title=title) # normalize output train and test color images x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # normalize input train and test grayscale images x_train_gray = x_train_gray.astype('float32') / 255 x_test_gray = x_test_gray.astype('float32') / 255 # reshape images to row x col x channels # for CNN output/validation x_train = x_train.reshape(x_train.shape[0], rows, cols, channels) x_test = x_test.reshape(x_test.shape[0], rows, cols, channels) # reshape images to row x col x channel for CNN input x_train_gray = x_train_gray.reshape(x_train_gray.shape[0], rows, cols, 1) x_test_gray = x_test_gray.reshape(x_test_gray.shape[0], rows, cols, 1) # source data, target data, test_source data data = (x_train_gray, x_train, x_test_gray) gray_shape = (rows, cols, 1) color_shape = (rows, cols, channels) # source shape, target shape shapes = (gray_shape, color_shape) return data, shapes
def load_cifar10(): (B_data, _), (test_B_data, _) = cifar10.load_data() A_data = other_utils.rgb2gray(B_data) test_A_data = other_utils.rgb2gray(test_B_data) A_data = A_data[:, :, :, np.newaxis] test_A_data = test_A_data[:, :, :, np.newaxis] data = (A_data, B_data, test_A_data, test_B_data) titles = ('CIFAR10 test_A_data images', 'CIFAR10 test_A_data images') return other_utils.load_data(data, titles)
def load_data(): # load CIFAR10 data (target_data, _), (test_target_data, _) = cifar10.load_data() # input image dimensions # we assume data format "channels_last" rows = target_data.shape[1] cols = target_data.shape[2] channels = target_data.shape[3] # convert color train and test images to gray source_data = other_utils.rgb2gray(target_data) test_source_data = other_utils.rgb2gray(test_target_data) # reshape images to row x col x channel for CNN input source_data = source_data.reshape(source_data.shape[0], rows, cols, 1) test_source_data = test_source_data.reshape(test_source_data.shape[0], rows, cols, 1) # source data, target data, test_source data data = (source_data, target_data, test_source_data, test_target_data) filenames = ('cifar10_test_source.png', 'cifar10_test_target.png') titles = ('CIFAR10 test source images', 'CIFAR10 test target images') return other_utils.load_data(data, titles, filenames)
import numpy as np from tensorflow.keras.datasets import cifar10 import matplotlib.pyplot as plt import other_utils import math # load dataset (x_train, y_train), (x_test, y_test) = cifar10.load_data() # sample cifar10 from train dataset size = 1 side = int(math.sqrt(size)) indexes = np.random.randint(0, x_train.shape[0], size=size) images = x_train[indexes] gray_images = other_utils.rgb2gray(x_train[indexes]) # plot color cifar10 plt.figure(figsize=(side, side)) for i in range(len(indexes)): plt.subplot(side, side, i + 1) image = images[i] plt.imshow(image) plt.axis('off') plt.savefig("cifar10-color-samples.png") plt.show() plt.close('all') # plot gray cifar10 plt.figure(figsize=(side, side))