def order_of_calling(registry_list, file_list, event_list, process_list): logging.info("\n---SCANNER CONTROL---") logging.info("Started calling scanners with given input") logging.info("Starting registry scan") rreg.main(registry_list) logging.info("Starting process scanner") pss.main(process_list) logging.info("Starting event log scanner") els.EventLogScanner(event_list) logging.info("Starting file scanner") fs.input_check(file_list[0], file_list[1]) output.main() print("") input("Press ENTER to quit") logging.info("Exiting program") sys.exit(0)
time1D = np.sqrt(1. / opt_t) freq_error, time_error = create_acf.err1Dfit(diff, length, rfi_frac, freq1D, time1D, opt_f, cov_f, opt_t, cov_t) params, acffit_2D = create_acf.acf2Dfit(acf_mid, acf_norm, middle_f, middle_t, intensity, opt_f, opt_t, mhzperbin, minperbin, f_end, t_end) C_1, C_2, C_3, C_0 = params Drift_rate = -(C_2 / (2 * C_3)) slope_visibility = C_2 / np.sqrt(np.abs(4 * C_1 * C_3)) #print('%.f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.6f %.6f' % (mjd_start,freq1D,freq_error,time1D,time_error,diff,length/60,minFreq,maxFreq,Drift_rate,slope_visibility)) secondary, sec_axes = create_sec.main(intensity, args, minFreq, maxFreq, diff, archive, name, length, mhzperbin, minperbin) output.main(args, archive, intensity, minFreq, maxFreq, length, extrapolx_f, extrapoly_f, fitxplot_f, extrapolx_t, extrapoly_t, fitxplot_t, freq1D, time1D, freq_error, time_error, midACF_freq, midACF_time, acf_mid, opt_f, opt_t, secondary, acffit_2D, f_end, t_end, mhzperbin, minperbin, Drift_rate, slope_visibility, sec_axes) #if args.plot: #output.main(intensity,minFreq, maxFreq,mjd_start,mjd_end,site,ra,dec,name,length,diff,midfreq,args,archive, extrapolx_f,extrapoly_f, fitxplot_f, extrapolx_t, extrapoly_t, fitxplot_t, freq1D, time1D, freq_error,time_error, midACF_freq, midACF_time,middle_f, middle_t,acf_mid,opt_f,opt_t,secondary_log, acffit_2D,f_end,t_end,mhzperbin,minperbin,Drift_rate,slope_visibility,sec_axes) #plt.imshow(intensity,aspect='auto',extent=[0,length/60,minFreq,maxFreq],vmax=1, vmin=-0.1,cmap='jet', interpolation='None') #plt.imshow(acf_mid,aspect='auto') #plt.xlabel("time(mins)") #plt.ylabel("frequency(Mhz)") #plt.colorbar(use_gridspec=True) #plt.savefig('%s_.png' % archive ) #plt.show()
import requests import json body = { "method": "neuralnetwork", "type": "regression", "kernel": "linear", "inputs": 2, "outputs": 2 } body = json.dumps(body) resp = requests.post( "https://5xpj1pu5y8.execute-api.ap-south-1.amazonaws.com/dev/generator", data=body) body = resp.json() print(body) # print(body["input"]["body"]) # print(body["code"]) with open('output.py', 'w+') as fl: fl.write(body["code"]) fl.close() import output output.main()
def pagemain(self, urls, page=1): soup = self.downloading(urls) datas = self.get_data(soup) # 生成html文件 output.main(datas, page)
def analyse(): print("Please Wait...") combine(Area.get()) output.main(Area.get()) print("Thank You for waiting. Your data has been analysed.")