コード例 #1
0
ファイル: HFF_v1.py プロジェクト: mmezache/HFFTest
def GetHFF(x,y,delta):
    """Compute and display the HF parameters of a signal on its single sided amplitude spectrum.
    
    Parameters:
        x - time vector
        y - signal
        delta - smoothing parameter
    Return:
        g - vector of the gap in frequency between the trend and the oscillations
        d - relative amplitude of the oscillations
    """
    # Fourier Transform frequency sampling
    dt=x[int(len(x)/2)]-x[int(len(x)/2-1)]
    Fs=1/(dt)
    (P1,f)=get_fft(y,Fs)
    # Smoothing the Fourier transform
    (fb,En)=EnergyBand(f,P1,delta,'Roll')
    #(fb,En)=(f,P1)
    # HFF parameters detection
    (nu_star,unused,n_1_star,n_2_star,n_3_star)=HFF_Parameters(fb,np.power(En,2))
    d=nu_star # relative amplitude of the HFF
    g=n_3_star-n_2_star # frequency interval between HFF and trend 
    # plot of the smoothed Fourier transfor and the HFF parameters
    sig=En
    
    fig, ax = getFig(1, 'Amplitude spectrum and HFF parameters')
    ax.plot(fb,sig)
    ax.plot(fb[n_1_star],sig[n_1_star],'rD')
    ax.plot(fb[n_2_star],sig[n_2_star],'rD')
    ax.plot(fb[n_3_star],sig[n_3_star],'bD')
    ax.set_yscale('log')
    ax.set_xlabel('Freq (Hz)')
    ax.set_ylabel('|Y(freq)|')
    return(g,d)
コード例 #2
0
ファイル: HFF_v1.py プロジェクト: mmezache/HFFTest
def SigOsc(x,ampl,sigma):
    """Return an oscillating signal with decreasing trend.
    Parameters:
        x - time vector
        ampl - amplitude of the oscillations
    Return:
        y - Oscillating signal
    """
    y1=1/np.sqrt((x+1))
    t1=np.zeros((int(len(x)/4),))
    t2=x[int(len(x)/4):int(3*len(x)/4)]
    t3=np.hstack((t1,t2))
    t=np.hstack((t3,t1))
    y2=ampl*np.sin(2*np.pi*t/6)
    y=y1+y2+5
    sig=y+np.random.normal(0,sigma,len(t))
    
    fig, ax = getFig(2, 'Test signal')
    ax[0].plot(x,y)
    ax[0].set_xlabel('time axis')
    ax[0].set_ylabel('real signal')
    ax[1].plot(x,sig)
    ax[1].set_xlabel('time axis')
    ax[1].set_ylabel('noisy signal')
    fig.tight_layout()    
    return(sig)
コード例 #3
0
ファイル: HFF_v1.py プロジェクト: mmezache/HFFTest
def l1(signal, regularizer):
    """
    Fits the l1 trend on top of the `signal` with a particular
    `regularizer`
    Parameters:
            signal(np.ndarray) - Original Signal that we want to fit l1
                trend
            regularizer(float) - Regularizer which provides a balance between
                smoothing of a signal and truthfulness of signal
    Returns:
        values(np.array) - l1 Trend of a signal that is extracted 
        from the signal
    """

    if not isinstance(signal, np.ndarray):
        raise TypeError("Signal Needs to be a numpy array")

    m = float(signal.min())
    M = float(signal.max())
    difference = M - m
    if not difference: # If signal is constant
        difference = 1
    t = (signal - m) / difference

    values = matrix(t)
    values = _l1(values, regularizer)
    values = values * difference + m
    values = np.asarray(values).squeeze()

    fig, ax = getFig(1,'Trend Estimation')
    x=np.linspace(0,1,len(signal))
    ax.plot(x, signal, label='Signal')
    ax.plot(x, values, label='Trend')
    fig.legend()
    return values  
コード例 #4
0
ファイル: HFF_v1.py プロジェクト: mmezache/HFFTest
def SanityCheckFunct(time,sigma,ca,cf):
    """ Build an oscillating signal with a trend like the Lennard John potential
    
    Parameters:
        time - discretisation x-axis
        sigma - standard deviation of the noise
        ca   - amplitude of the oscillations
        cf   - frenquency of the oscillations in 3600*Hz
    Returns:
        t - time 
        sc - oscillating signal   
    """
    # Parameters for the trend of the signal
    c1=0.4
    c2=2
    c3=4
    c4=5
    n=len(time)
    
    # Trend construction
    t_temp1=time[int(n/8):]
    trend2 = c1*(np.power(c2*np.true_divide(1,t_temp1),8) \
                 - c3*np.power(c2*np.true_divide(1,t_temp1),4))+c4
    t_temp2=time[:int(n/8)]
    a=time[int(n/8-10)]
    b=time[int(n/8)]
    f_a=c1*((c2/a)**8 - c3*(c2/a)**3)+c4
    f_b=c1*((c2/b)**8 - c3*(c2/b)**3)+c4
    trend1=((f_b-f_a)/b)*t_temp2+f_a;
    trend=np.concatenate((trend1,trend2))
    
    # oscillations construction
    t2=np.concatenate((np.ones(int(n/8-1))*time[int(n/8)],time[int(n/8):int(2*n/8)+1],\
                       np.ones(len(time)-int(2*n/8))*time[int(n/8)]));
    osc=ca*np.multiply(np.multiply((t2-time[int(int(n/8))]),(time[int(2*n/8)]-t2)),np.sin(t2*2*np.pi*cf))\
                       *(4/(time[int(2*n/8)]-time[int(n/8)])**2)
                       
    # Noise construction Gaussian distributed
    noise=np.random.normal(0,sigma,len(time))
    
    sc=trend+osc+noise
    fig, ax = getFig(2, 'Test signal')
    ax[0].plot(time,trend+osc)
    ax[0].set_xlabel('time axis')
    ax[0].set_ylabel('real signal')
    ax[1].plot(time,sc)
    ax[1].set_xlabel('time axis')
    ax[1].set_ylabel('noisy signal')
    fig.tight_layout() 
    return(sc)
コード例 #5
0
ファイル: HFF_v1.py プロジェクト: mmezache/HFFTest
def RejZoneAlpha(g,d,gmu,dmu,alpha):
    """Compute for each point of the cloud of the points {(g,d)} the proportion
    of points in the North-East quarter of the plane.
    Parameters:
        g - vector of the gap in frequency between the trend and the 
        oscillations (null hypothesis)
        d - vector of the relative amplitudes of the oscillations (null 
        hypothesis)
        gmu - gap in frequency between the trend and the 
        oscillations (signal subject to the test)
        dmu - relative amplitude of the oscillations (signal subject to the 
        test)
        alpha - level of the test (number of false negative acceptable in %)
    Returns:
        c_alpha - set of threshold for the gap in frequency of level alpha 
        nu_alpha - set of threshold for the relative amplitude of level alpha
        g_mesh - x-axis for the grid of the mesh (frequency gap)
        d_mesh - y-axis for the grid of the mesh (relative amplitude)
        mesh - necessary grid to compute threshold of any level alpha
    """
    
    n=len(g)
    K=int(alpha*n)
    g_mesh=np.unique(g) # ordered vector of gap in frequency  
    d_mesh=np.unique(d)  # ordered vector of amplitude 
    x=np.vstack((g,d))
    x=np.transpose(x)
    mesh=np.zeros(n)
    for i in range(n):
        xtest=np.concatenate((np.ones((n,1))*g[i],np.ones((n,1))*d[i]),axis=1) # vector for the 2D order relation
        xtilde=(x>=xtest).astype(int) # 2D order relation
        out=xtilde[np.all(xtilde!=0,axis=1)] # get rid of rows with 0 in it
        mesh[i]=len(out[:,1]) # number of couple in the north east corner of the plane
    index_alpha=np.where(abs(mesh-K)<(1/n))
    c_alpha=g[index_alpha]
    nu_alpha=d[index_alpha]

    fig, ax = getFig(1,'Cloud of points and HFF parameters')
    ax.scatter(g,d, c='b', s=10)
    ax.set_xlabel('Frequency gap g')
    ax.set_ylabel('Relative Amplitude d')
    ax.scatter(gmu, dmu, c='r', s=40)
    
    ax.set_ylim([min(np.hstack((d,dmu))),max(np.hstack((d,dmu)))])
    
    return(c_alpha,nu_alpha,g_mesh,d_mesh,mesh)