async def _do_p2p_handshake(transport: TransportAPI, capabilities: Capabilities, p2p_handshake_params: DevP2PHandshakeParams, base_protocol: BaseP2PProtocol, token: CancelToken) -> Tuple[DevP2PReceipt, BaseP2PProtocol]: client_version_string, listen_port, p2p_version = p2p_handshake_params base_protocol.send(Hello(HelloPayload( client_version_string=client_version_string, capabilities=capabilities, listen_port=listen_port, version=p2p_version, remote_public_key=transport.public_key.to_bytes(), ))) # The base `p2p` protocol handshake directly streams the messages as it has # strict requirements about receiving the `Hello` message first. async for _, cmd in stream_transport_messages(transport, base_protocol, token=token): if not isinstance(cmd, Hello): raise HandshakeFailure( f"First message across the DevP2P connection must be a Hello " f"msg, got {cmd}, disconnecting" ) protocol: BaseP2PProtocol if base_protocol.version >= DEVP2P_V5: # Check whether to support Snappy Compression or not # based on other peer's p2p protocol version snappy_support = cmd.payload.version >= DEVP2P_V5 if snappy_support: # Now update the base protocol to support snappy compression # This is needed so that Trinity is compatible with parity since # parity sends Ping immediately after handshake protocol = P2PProtocolV5( transport, command_id_offset=0, snappy_support=True, ) else: protocol = base_protocol else: protocol = base_protocol devp2p_receipt = DevP2PReceipt( protocol=protocol, version=cmd.payload.version, client_version_string=cmd.payload.client_version_string, capabilities=cmd.payload.capabilities, remote_public_key=cmd.payload.remote_public_key, listen_port=cmd.payload.listen_port, ) break else: raise HandshakeFailure("DevP2P message stream exited before finishing handshake") return devp2p_receipt, protocol
async def test_handshake(): # TODO: this test should be re-written to not depend on functionality in the `ETHPeer` class. cancel_token = CancelToken("test_handshake") use_eip8 = False initiator_remote = kademlia.Node( keys.PrivateKey(test_values['receiver_private_key']).public_key, kademlia.Address('0.0.0.0', 0, 0)) initiator = HandshakeInitiator( initiator_remote, keys.PrivateKey(test_values['initiator_private_key']), use_eip8, cancel_token) initiator.ephemeral_privkey = keys.PrivateKey( test_values['initiator_ephemeral_private_key']) responder_remote = kademlia.Node( keys.PrivateKey(test_values['initiator_private_key']).public_key, kademlia.Address('0.0.0.0', 0, 0)) responder = HandshakeResponder( responder_remote, keys.PrivateKey(test_values['receiver_private_key']), use_eip8, cancel_token) responder.ephemeral_privkey = keys.PrivateKey( test_values['receiver_ephemeral_private_key']) # Check that the auth message generated by the initiator is what we expect. Notice that we # can't use the auth_init generated here because the non-deterministic prefix would cause the # derived secrets to not match the expected values. _auth_init = initiator.create_auth_message(test_values['initiator_nonce']) assert len(_auth_init) == len(test_values['auth_plaintext']) assert _auth_init[65:] == test_values['auth_plaintext'][ 65:] # starts with non deterministic k # Check that encrypting and decrypting the auth_init gets us the orig msg. _auth_init_ciphertext = initiator.encrypt_auth_message(_auth_init) assert _auth_init == ecies.decrypt(_auth_init_ciphertext, responder.privkey) # Check that the responder correctly decodes the auth msg. auth_msg_ciphertext = test_values['auth_ciphertext'] initiator_ephemeral_pubkey, initiator_nonce, _ = decode_authentication( auth_msg_ciphertext, responder.privkey) assert initiator_nonce == test_values['initiator_nonce'] assert initiator_ephemeral_pubkey == (keys.PrivateKey( test_values['initiator_ephemeral_private_key']).public_key) # Check that the auth_ack msg generated by the responder is what we expect. auth_ack_msg = responder.create_auth_ack_message( test_values['receiver_nonce']) assert auth_ack_msg == test_values['authresp_plaintext'] # Check that the secrets derived from ephemeral key agreements match the expected values. auth_ack_ciphertext = test_values['authresp_ciphertext'] aes_secret, mac_secret, egress_mac, ingress_mac = responder.derive_secrets( initiator_nonce, test_values['receiver_nonce'], initiator_ephemeral_pubkey, auth_msg_ciphertext, auth_ack_ciphertext) assert aes_secret == test_values['aes_secret'] assert mac_secret == test_values['mac_secret'] # Test values are from initiator perspective, so they're reversed here. assert ingress_mac.digest() == test_values['initial_egress_MAC'] assert egress_mac.digest() == test_values['initial_ingress_MAC'] # Check that the initiator secrets match as well. responder_ephemeral_pubkey, responder_nonce = initiator.decode_auth_ack_message( test_values['authresp_ciphertext']) (initiator_aes_secret, initiator_mac_secret, initiator_egress_mac, initiator_ingress_mac) = initiator.derive_secrets( initiator_nonce, responder_nonce, responder_ephemeral_pubkey, auth_msg_ciphertext, auth_ack_ciphertext) assert initiator_aes_secret == aes_secret assert initiator_mac_secret == mac_secret assert initiator_ingress_mac.digest() == test_values['initial_ingress_MAC'] assert initiator_egress_mac.digest() == test_values['initial_egress_MAC'] # Finally, check that two Peers configured with the secrets generated above understand each # other. ( (responder_reader, responder_writer), (initiator_reader, initiator_writer), ) = get_directly_connected_streams() capabilities = (('paragon', 1), ) initiator_transport = Transport(remote=initiator_remote, private_key=initiator.privkey, reader=initiator_reader, writer=initiator_writer, aes_secret=initiator_aes_secret, mac_secret=initiator_mac_secret, egress_mac=initiator_egress_mac, ingress_mac=initiator_ingress_mac) initiator_p2p_protocol = P2PProtocolV5(initiator_transport, 0, False) initiator_multiplexer = Multiplexer( transport=initiator_transport, base_protocol=initiator_p2p_protocol, protocols=(), ) initiator_multiplexer.get_base_protocol().send( Hello( HelloPayload( client_version_string='initiator', capabilities=capabilities, listen_port=30303, version=DEVP2P_V5, remote_public_key=initiator.privkey.public_key.to_bytes(), ))) responder_transport = Transport( remote=responder_remote, private_key=responder.privkey, reader=responder_reader, writer=responder_writer, aes_secret=aes_secret, mac_secret=mac_secret, egress_mac=egress_mac, ingress_mac=ingress_mac, ) responder_p2p_protocol = P2PProtocolV5(responder_transport, 0, False) responder_multiplexer = Multiplexer( transport=responder_transport, base_protocol=responder_p2p_protocol, protocols=(), ) responder_multiplexer.get_base_protocol().send( Hello( HelloPayload( client_version_string='responder', capabilities=capabilities, listen_port=30303, version=DEVP2P_V5, remote_public_key=responder.privkey.public_key.to_bytes(), ))) async with initiator_multiplexer.multiplex(): async with responder_multiplexer.multiplex(): initiator_stream = initiator_multiplexer.stream_protocol_messages( initiator_p2p_protocol, ) responder_stream = responder_multiplexer.stream_protocol_messages( responder_p2p_protocol, ) initiator_hello = await asyncio.wait_for( initiator_stream.asend(None), timeout=0.1) responder_hello = await asyncio.wait_for( responder_stream.asend(None), timeout=0.1) await initiator_stream.aclose() await responder_stream.aclose() assert isinstance(responder_hello, Hello) assert isinstance(initiator_hello, Hello)
async def test_handshake_eip8(): cancel_token = CancelToken("test_handshake_eip8") use_eip8 = True initiator_remote = kademlia.Node( keys.PrivateKey(eip8_values['receiver_private_key']).public_key, kademlia.Address('0.0.0.0', 0, 0)) initiator = HandshakeInitiator( initiator_remote, keys.PrivateKey(eip8_values['initiator_private_key']), use_eip8, cancel_token) initiator.ephemeral_privkey = keys.PrivateKey( eip8_values['initiator_ephemeral_private_key']) responder_remote = kademlia.Node( keys.PrivateKey(eip8_values['initiator_private_key']).public_key, kademlia.Address('0.0.0.0', 0, 0)) responder = HandshakeResponder( responder_remote, keys.PrivateKey(eip8_values['receiver_private_key']), use_eip8, cancel_token) responder.ephemeral_privkey = keys.PrivateKey( eip8_values['receiver_ephemeral_private_key']) auth_init_ciphertext = eip8_values['auth_init_ciphertext'] # Check that we can decrypt/decode the EIP-8 auth init message. initiator_ephemeral_pubkey, initiator_nonce, _ = decode_authentication( auth_init_ciphertext, responder.privkey) assert initiator_nonce == eip8_values['initiator_nonce'] assert initiator_ephemeral_pubkey == (keys.PrivateKey( eip8_values['initiator_ephemeral_private_key']).public_key) responder_nonce = eip8_values['receiver_nonce'] auth_ack_ciphertext = eip8_values['auth_ack_ciphertext'] aes_secret, mac_secret, egress_mac, ingress_mac = responder.derive_secrets( initiator_nonce, responder_nonce, initiator_ephemeral_pubkey, auth_init_ciphertext, auth_ack_ciphertext) # Check that the secrets derived by the responder match the expected values. assert aes_secret == eip8_values['expected_aes_secret'] assert mac_secret == eip8_values['expected_mac_secret'] # Also according to https://github.com/ethereum/EIPs/blob/master/EIPS/eip-8.md, running B's # ingress-mac keccak state on the string "foo" yields the following hash: ingress_mac_copy = ingress_mac.copy() ingress_mac_copy.update(b'foo') assert ingress_mac_copy.hexdigest() == ( '0c7ec6340062cc46f5e9f1e3cf86f8c8c403c5a0964f5df0ebd34a75ddc86db5') responder_ephemeral_pubkey, responder_nonce = initiator.decode_auth_ack_message( auth_ack_ciphertext) (initiator_aes_secret, initiator_mac_secret, initiator_egress_mac, initiator_ingress_mac) = initiator.derive_secrets( initiator_nonce, responder_nonce, responder_ephemeral_pubkey, auth_init_ciphertext, auth_ack_ciphertext) # Check that the secrets derived by the initiator match the expected values. assert initiator_aes_secret == eip8_values['expected_aes_secret'] assert initiator_mac_secret == eip8_values['expected_mac_secret'] # Finally, check that two Peers configured with the secrets generated above understand each # other. ( (responder_reader, responder_writer), (initiator_reader, initiator_writer), ) = get_directly_connected_streams() capabilities = (('testing', 1), ) initiator_transport = Transport(remote=initiator_remote, private_key=initiator.privkey, reader=initiator_reader, writer=initiator_writer, aes_secret=initiator_aes_secret, mac_secret=initiator_mac_secret, egress_mac=initiator_egress_mac, ingress_mac=initiator_ingress_mac) initiator_p2p_protocol = P2PProtocolV5(initiator_transport, 0, False) initiator_multiplexer = Multiplexer( transport=initiator_transport, base_protocol=initiator_p2p_protocol, protocols=(), ) initiator_multiplexer.get_base_protocol().send( Hello( HelloPayload( client_version_string='initiator', capabilities=capabilities, listen_port=30303, version=DEVP2P_V5, remote_public_key=initiator.privkey.public_key.to_bytes(), ))) responder_transport = Transport( remote=responder_remote, private_key=responder.privkey, reader=responder_reader, writer=responder_writer, aes_secret=aes_secret, mac_secret=mac_secret, egress_mac=egress_mac, ingress_mac=ingress_mac, ) responder_p2p_protocol = P2PProtocolV4(responder_transport, 0, False) responder_multiplexer = Multiplexer( transport=responder_transport, base_protocol=responder_p2p_protocol, protocols=(), ) responder_multiplexer.get_base_protocol().send( Hello( HelloPayload( client_version_string='responder', capabilities=capabilities, listen_port=30303, version=DEVP2P_V4, remote_public_key=responder.privkey.public_key.to_bytes(), ))) async with initiator_multiplexer.multiplex(): async with responder_multiplexer.multiplex(): initiator_stream = initiator_multiplexer.stream_protocol_messages( initiator_p2p_protocol, ) responder_stream = responder_multiplexer.stream_protocol_messages( responder_p2p_protocol, ) initiator_hello = await initiator_stream.asend(None) responder_hello = await responder_stream.asend(None) await initiator_stream.aclose() await responder_stream.aclose() assert isinstance(responder_hello, Hello) assert isinstance(initiator_hello, Hello)