def qntdaily(symbol): eqsdbdf = p4fns.readhdr_csv(NSEEQSDBDIR + symbol + CSV) eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES)[-252:] eqsdbdf = eqsdbdf + eqsdb inputdf = p4fns.rearrange(eqsdbdf, PQS, JSONCOL) p4fns.write_json(JSONDLYDIR + symbol + JSON, inputdf, EQCOLTYP)
def qntresult(symbol, resdf): techtitle = ['SYMBOL'] techtable = [] result = [ dp.parse(row[PRES['TIMESTAMP']]).strftime('%Y-%m-%d') for row in resdf if row[PRES['SYMBOL']] == symbol ][-8:] srow = [] srow.append(symbol) eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) for res in result: backmean = p4fns.smean([ float(row[PQS['CLOSE']]) for row in p4fns.blockdf(eqsdb, PQS, res, 21, 'be') ]) fronmean = p4fns.smean([ float(row[PQS['CLOSE']]) for row in p4fns.blockdf(eqsdb, PQS, res, 21, 'fe') ]) effect = round(math.log(fronmean / backmean) * 100, 2) srow.append(effect) techtitle.append(res) techtable.append(srow) techtable = [techtitle] + techtable p4fns.write_json(JSONRESDIR + symbol + JSON, techtable, TECHCOLTYP)
def qntperf(symbol, name): perftable = [] eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) ## Price Values ## ============================================== ## price = [float(row[PQS['CLOSE']]) for row in eqsdb] perf1w = round(math.log(price[-1] / price[-5]) * 100, 2) if len(price) > 5 else '-' perf1m = round(math.log(price[-1] / price[-21]) * 100, 2) if len(price) > 21 else '-' perf3m = round(math.log(price[-1] / price[-63]) * 100, 2) if len(price) > 63 else '-' perf6m = round(math.log(price[-1] / price[-126]) * 100, 2) if len(price) > 126 else '-' perf1y = round(math.log(price[-1] / price[-252]) * 100, 2) if len(price) > 252 else '-' perf2y = round(math.log(price[-1] / price[-504]) * 100, 2) if len(price) > 504 else '-' perf4y = round(math.log(price[-1] / price[-1008]) * 100, 2) if len(price) > 1008 else '-' ## Volatility Values ## ============================================== ## gain = [float(row[PQS['GAIN']]) for row in eqsdb] stdd1w = round(p4fns.sstdd(gain[-5:]) * math.sqrt(252), 2) if len(price) > 5 else '-' stdd1m = round(p4fns.sstdd(gain[-21:]) * math.sqrt(252), 2) if len(price) > 21 else '-' stdd3m = round(p4fns.sstdd(gain[-63:]) * math.sqrt(252), 2) if len(price) > 63 else '-' stdd6m = round(p4fns.sstdd(gain[-126:]) * math.sqrt(252), 2) if len(price) > 126 else '-' stdd1y = round(p4fns.sstdd(gain[-252:]) * math.sqrt(252), 2) if len(price) > 252 else '-' stdd2y = round(p4fns.sstdd(gain[-504:]) * math.sqrt(252), 2) if len(price) > 504 else '-' stdd4y = round(p4fns.sstdd(gain[-1008:]) * math.sqrt(252), 2) if len(price) > 1008 else '-' perftable.append([symbol,name,perf1w,perf1m,perf3m,perf6m,perf1y,perf2y,perf4y,\ stdd1w,stdd1m,stdd3m,stdd6m,stdd1y,stdd2y,stdd4y]) p4fns.write_csv(NSETECHDIR + 'NSEPerf' + CSV, perftable, 'a')
def qntpair(symbol, period, deltaP, deltaN, rwindow, mwindow, pairlist): title = ['PAIR', 'NORM', 'DWSTAT'] maxper = period + rwindow + mwindow - 1 table = [] datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES)[-maxper:] pclose = [math.log(float(row[PQS['CLOSE']])) for row in datadb] pvwap = [math.log(float(row[PQS['VWAP']])) for row in datadb] dsize = len(pclose) if (dsize >= rwindow + mwindow + 40): for pair in pairlist: reffdb = p4fns.read_csv(NSEEQSDBDIR + pair + CSV)[-maxper:] pvwapR = [math.log(float(row[PQS['VWAP']])) for row in reffdb] regr = p4fns.rolling_regress(pvwap[-dsize:], pvwapR[-dsize:], rwindow) rlen = len(regr) error = [ round((a / b - 1) * 100, 2) for a, b in zip(pclose[-rlen:], regr[-rlen:]) ] mu = p4fns.rolling_smean(error, mwindow) sg = p4fns.rolling_sstdd(error, mwindow) mlen = len(sg) error = error[-mlen:] normdist = int( p4fns.cumnormdist((error[-1] - mu[-1]) / sg[-1]) * 100) et_t1 = sum([ math.pow((error[i] - error[i - 1]), 2) for i in range(1, mlen) ]) et_sq = sum([math.pow(error[i], 2) for i in range(0, mlen)]) dwstat = round(et_t1 / et_sq, 2) table.append([pair, normdist, dwstat]) p4fns.write_csv(NSEPAIRDIR + symbol + CSV, [title] + table, 'w') p4fns.write_json(JSONPAIRDIR + symbol + JSON, [title] + table, [])
def qnttech(symbol, name): techtable = [] eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) ## Price Bands ## ============================================== ## price = [float(row[PQS['CLOSE']]) for row in eqsdb] vwap = [float(row[PQS['VWAP']]) for row in eqsdb] pb1m = int((price[-1] - min(price[-21:])) / (max(price[-21:]) - min(price[-21:])) * 100) if len(price) > 21 else '-' pb3m = int((price[-1] - min(price[-63:])) / (max(price[-63:]) - min(price[-63:])) * 100) if len(price) > 63 else '-' pb6m = int((price[-1] - min(price[-126:])) / (max(price[-126:]) - min(price[-126:])) * 100) if len(price) > 126 else '-' pb1y = int((price[-1] - min(price[-252:])) / (max(price[-252:]) - min(price[-252:])) * 100) if len(price) > 252 else '-' ## Bollinger Bands ## ============================================== ## dsize = len(price) period = [21, 63, 126, 252] bb = ['-'] * 4 for i in range(0, 4): if (dsize > period[i] + 1): mu = p4fns.rolling_emean(vwap[-(period[i] + 1):], period[i])[-1] sg = p4fns.rolling_sstdd(vwap[-(period[i] + 1):], period[i])[-1] bb[i] = int(p4fns.cumnormdist((price[-1] - mu) / sg) * 100) techtable.append( [symbol, name, pb1m, pb3m, pb6m, pb1y, bb[0], bb[1], bb[2], bb[3]]) p4fns.write_csv(NSETECHDIR + 'NSETech' + CSV, techtable, 'a')
years = int(sys.argv[6]) dur = int(sys.argv[7]) * 252 ixlist = ['NIFTY', 'BANKNIFTY'] cnx500 = [row[2] for row in p4fns.read_csv(NSEEQDIR + 'CNX500.csv')] cnx100 = [row[2] for row in p4fns.read_csv(NSEEQDIR + 'CNX100.csv')] cnx50 = [row[2] for row in p4fns.read_csv(NSEEQDIR + 'CNX50.csv')] cnxlist = cnx500 days = 252 * years + mwindow result = [] # ============================================================================================= ## # Bollinger Band # ============================================================================================= ## if symbol1 in cnxlist: datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol1 + CSV), PQS, 'SERIES', REGEQSERIES)[-days:] price1 = [math.log(float(row[PQS['CLOSE']])) for row in datadb] vwap1 = [math.log(float(row[PQS['VWAP']])) for row in datadb] instrm1 = 'EQ' else: datadb = p4fns.read_csv(NSEIXSDBDIR + symbol1 + CSV)[-days:] price1 = [math.log(float(row[PXS['CLOSE']])) for row in datadb] vwap1 = price1 instrm1 = 'IX' if symbol2 in cnxlist: datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol2 + CSV), PQS, 'SERIES', REGEQSERIES)[-days:] price2 = [math.log(float(row[PQS['CLOSE']])) for row in datadb] instrm2 = 'EQ' else: datadb = p4fns.read_csv(NSEIXSDBDIR + symbol2 + CSV)[-days:]
# srow.append(eqsdb[i][PQS['OPEN']]) # srow.append(eqsdb[i][PQS['HIGH']]) # srow.append(eqsdb[i][PQS['LOW']]) # srow.append(eqsdb[i][PQS['CLOSE']]) # srow.append(round(float(eqsdb[i][PQS['TURNOVER']])/10000000, 2)) # srow.append(avgiv[i] if avgiv[i] != 0 else volatility[i]) # genldata.append(srow) # # p4fns.write_csv(NSEDIR+'TECHNICAL/GENL/'+symbol+CSV, genldata, 'w') # Bollinger Bands + AutoRegression + Nifty Regression # =================================================== ## #for symbol in cnxlist: for symbol in ['HDFCBANK']: eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) eqsize = len(eqsdb) dsize = 252 # # Bollinger Bands # # --------------------------------------------------- # # genldata = p4fns.read_csv(NSEDIR+'TECHNICAL/GENL/'+symbol+CSV) # title = ['TIMESTAMP','CLOSE','MEAN','SIGMA'] # dsize = min(252, len(genldata)) # vwap = [float(row[PQS['VWAP']]) for row in eqsdb] # emean = p4fns.rolling_emean(vwap, 21)[-dsize:] # eqdata = eqsdb[-dsize:] # genldata = genldata[-dsize:] # vwap = vwap[-dsize:] # table = [] # sigma = [round(float(genldata[i][6])*vwap[i]/(math.sqrt(252)*100),2) for i in range(dsize)] #
def qntgenl(symbol, name, sector, industry, mktcap, mcpercent): techtitle = ['SYMBOL','PRICE','GAIN','NAME','SECTOR','INDUSTRY','MKT_CAP','MC_PERCENT',\ 'VOLATILITY','MAX_VTY','MIN_VTY','VOLUME','MAX_VOL','MIN_VOL'] techtable = [] srow = [] srow.append(symbol) eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) ## Current Values ## ============================================== ## curprice = eqsdb[-1][PQS['CLOSE']] srow.append(curprice) change = round(float(eqsdb[-1][PQS['GAIN']]), 2) srow.append(change) srow.append(name) srow.append(sector) srow.append(industry) srow.append(mktcap) srow.append(mcpercent) ## Volatility ## ============================================== ## if path.isfile(NSEDVSDBDIR + symbol + CSV): dvsdb = p4fns.filterdf(p4fns.filterdf(p4fns.filterdf(p4fns.read_csv(NSEDVSDBDIR+symbol+CSV),\ PDS, 'INSTRUMENT', ['OPTSTK']),\ PDS, 'TIMESTAMP', [today]),\ PDS, 'T2E', [str(x) for x in range(1,50)]) ivlist = [float(row[PDS['IV']]) for row in dvsdb] wtlist = [float(row[PDS['VAL_INLAKH']]) for row in dvsdb] if sum(wtlist) >= 100: avgiv = round(p4fns.wmean(ivlist, wtlist), 2) else: avgiv = 0 else: avgiv = 0 eqdata = eqsdb[-756:] gain = [float(row[PQS['GAIN']]) for row in eqdata] cum_gain = p4fns.rolling_sum(gain, 21) rol_stdd = p4fns.rolling_sstdd(cum_gain, 21) if (avgiv == 0): stdd1m = round(p4fns.sstdd(cum_gain) * math.sqrt(12), 2) volatility = stdd1m else: volatility = avgiv max_stdd = max([volatility, round(max(rol_stdd) * math.sqrt(12), 2)]) min_stdd = min([volatility, round(min(rol_stdd) * math.sqrt(12), 2)]) srow.append(volatility) srow.append(max_stdd) srow.append(min_stdd) ## Volume ## ============================================== ## eqdata = eqsdb[-252:] turnover = [ round(float(row[PQS['TURNOVER']]) / 10000000, 2) for row in eqdata ] volume = p4fns.rolling_emean(turnover, 3) max_vol = max(volume) min_vol = min(volume) srow.append(turnover[-1]) srow.append(max_vol) srow.append(min_vol) ## Create JSON File ## ============================================== ## techtable.append(srow) p4fns.write_csv(NSEGENLDIR + symbol + CSV, [techtitle] + techtable, 'w') p4fns.write_json(JSONGENLDIR + symbol + JSON, [techtitle] + techtable, TECHCOLTYP) genltable = [] grow = [] grow.append(symbol) grow.append(name) grow.append(sector) grow.append(industry) grow.append(curprice) grow.append(change) grow.append(mktcap) grow.append(turnover[-1]) grow.append(volatility) genltable.append(grow) p4fns.write_csv(NSETECHDIR + 'NSEGenl' + CSV, genltable, 'a')
def qntevent(symbol, bonuspst, bonusfut, splitpst, splitfut, rightpst, rightfut, divdnpst, divdnfut, resltpst, resltfut): eventsum = [] bpst = p4fns.filterdf(bonuspst, PBON, 'SYMBOL', [symbol]) bfut = p4fns.filterdf(bonusfut, PBON, 'SYMBOL', [symbol]) spst = p4fns.filterdf(splitpst, PSPL, 'SYMBOL', [symbol]) sfut = p4fns.filterdf(splitfut, PSPL, 'SYMBOL', [symbol]) gpst = p4fns.filterdf(rightpst, PRGT, 'SYMBOL', [symbol]) gfut = p4fns.filterdf(rightfut, PRGT, 'SYMBOL', [symbol]) dpst = p4fns.filterdf(divdnpst, PDIV, 'SYMBOL', [symbol]) dfut = p4fns.filterdf(divdnfut, PDIV, 'SYMBOL', [symbol]) rpst = p4fns.filterdf(resltpst, PRES, 'SYMBOL', [symbol]) rfut = p4fns.filterdf(resltfut, PRES, 'SYMBOL', [symbol]) for row in bpst: eventsum.append([ dp.parse(row[PBON['EXDATE']]), 'Bonus Shares', row[PBON['RATIO']], 'P' ]) for row in bfut: eventsum.append([ dp.parse(row[PBON['EXDATE']]), 'Bonus Shares', row[PBON['RATIO']], 'F' ]) for row in spst: eventsum.append([ dp.parse(row[PSPL['EXDATE']]), 'Stock Split', row[PSPL['RATIO']], 'P' ]) for row in sfut: eventsum.append([ dp.parse(row[PSPL['EXDATE']]), 'Stock Split', row[PSPL['RATIO']], 'F' ]) for row in gpst: eventsum.append([ dp.parse(row[PRGT['EXDATE']]), 'Rights Issue', row[PRGT['RATIO']], 'P' ]) for row in gpst: eventsum.append([ dp.parse(row[PRGT['EXDATE']]), 'Rights Issue', row[PRGT['RATIO']], 'F' ]) for row in dpst: eventsum.append([ dp.parse(row[PDIV['EXDATE']]), 'Dividend Declaration', row[PDIV['DIVIDEND']] + ' Rs', 'P' ]) for row in dfut: eventsum.append([ dp.parse(row[PDIV['EXDATE']]), 'Dividend Declaration', row[PDIV['DIVIDEND']] + ' Rs', 'F' ]) for row in rpst: eventsum.append( [dp.parse(row[PRES['TIMESTAMP']]), 'Result Declaration', '-', 'P']) for row in rfut: eventsum.append( [dp.parse(row[PRES['TIMESTAMP']]), 'Result Declaration', '-', 'F']) eventsum.sort(key=lambda x: x[0]) eventsum = [[row[0].strftime('%Y-%m-%d')] + row[1:] for row in eventsum] fname = JSONEVNTDIR + symbol + JSON with open(fname, 'w') as fjson: json.dump(eventsum, fjson)
def pltcrosregres(symbol, period, deltaP, deltaN, rwindow, mwindow): maxper = period + rwindow + mwindow - 1 datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES)[-maxper:] ptimestamp = [ date2num(datetime.strptime(row[PQS['TIMESTAMP']], '%Y-%m-%d')) for row in datadb ] pclose = [math.log(float(row[PQS['CLOSE']])) for row in datadb] pvwap = [math.log(float(row[PQS['VWAP']])) for row in datadb] dsize = len(ptimestamp) if (dsize >= rwindow + mwindow + 40): # pairlist = [row[0] for row in p4fns.read_csv(NSEPAIRDIR+symbol+CSV)]+['NIFTY'] pairlist = ['NIFTY'] for pair in pairlist: if pair in ixlist: reffdb = p4fns.read_csv(NSEIXSDBDIR + pair + CSV)[-maxper:] pvwapR = [math.log(float(row[PXS['CLOSE']])) for row in reffdb] else: reffdb = p4fns.read_csv(NSEEQSDBDIR + pair + CSV)[-maxper:] pvwapR = [math.log(float(row[PQS['VWAP']])) for row in reffdb] regr = p4fns.rolling_regress(pvwap[-dsize:], pvwapR[-dsize:], rwindow) rlen = len(regr) error = [ round((a / b - 1) * 100, 2) for a, b in zip(pclose[-rlen:], regr[-rlen:]) ] stimestamp = ptimestamp[-rlen:] mu = p4fns.rolling_smean(error, mwindow) sg = p4fns.rolling_sstdd(error, mwindow) mlen = len(sg) error = error[-mlen:] stimestamp = stimestamp[-mlen:] mu = mu[-mlen:] sg = sg[-mlen:] upl = [mu[i] + sg[i] * deltaP for i in range(mlen)] lwl = [mu[i] - sg[i] * deltaN for i in range(mlen)] majorl = MonthLocator() xformat = DateFormatter('%b') fig = plt.figure(figsize=(6, 3)) gs = gridspec.GridSpec(1, 1) ax1 = plt.subplot(gs[0]) plt.title(symbol, loc='left', color=textc, weight='bold') plt.title('StatArb [' + symbol + ' vs ' + pair + ']', loc='left', color=textc, weight='bold', size='small') ax1.xaxis.set_major_locator(majorl) ax1.xaxis.set_major_formatter(xformat) ax1.yaxis.tick_right() ax1.grid(b=True, which='major', color=gridc, linestyle=':') ax1.patch.set_facecolor(backc) ax1.spines['bottom'].set_color(labelc) ax1.spines['top'].set_color(backc) ax1.spines['right'].set_color(labelc) ax1.spines['left'].set_color(backc) ax1.tick_params(axis='x', colors=labelc) ax1.tick_params(axis='y', colors=labelc) for label in (ax1.get_xticklabels() + ax1.get_yticklabels()): label.set_fontsize(6) ax1.plot(stimestamp, error, color='deepskyblue', linewidth=1.5) ax1.xaxis_date() ax1.autoscale_view() ax1.set_aspect('auto') plt.setp(ax1.get_xticklabels(), horizontalalignment='center', fontsize=8) ax2 = plt.subplot(gs[0]) ax2.plot(stimestamp, mu, color='royalblue', linewidth=1.5) ax3 = plt.subplot(gs[0]) ax3.plot(stimestamp, upl, color='yellowgreen') ax4 = plt.subplot(gs[0]) ax4.plot(stimestamp, lwl, color='orangered') plt.figtext(0.94, 0.94, '$\copyright$ piby4.com ' + today, color=sitec, size='xx-small', ha='right') gs.tight_layout(fig) # plt.savefig(IMGCRRDIR+symbol+'_'+pair+'.png', facecolor=(backc)) plt.savefig('aaa.png', facecolor=(backc)) plt.close(fig)
#!/usr/bin/env python from p4defs import * import p4fns import math import os.path as path cnxlist = [row[PCAT['SYMBOL']] for row in p4fns.read_csv(NSEEQCatalog)] ixclist = ['NIFTY', 'BANKNIFTY'] count = 0 for symbol in cnxlist + ixclist: count += 1 print count if path.isfile(NSEDVSDBDIR + symbol + CSV): dvxdata = [['TIMESTAMP', 'AVGIV']] eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) ## Volatility ## ============================================== ## dvsdb = p4fns.read_csv(NSEDVSDBDIR + symbol + CSV) for row in eqsdb: timestamp = row[PQS['TIMESTAMP']] dvtdb = p4fns.filterdf(p4fns.filterdf(p4fns.filterdf(dvsdb,\ PDS, 'INSTRUMENT', ['OPTSTK']),\ PDS, 'TIMESTAMP', [timestamp]),\ PDS, 'T2E', [str(x) for x in range(1,50)]) ivlist = [float(row[PDS['IV']]) for row in dvtdb] wtlist = [float(row[PDS['VAL_INLAKH']]) for row in dvtdb] if sum(wtlist) >= 100: avgiv = round(p4fns.wmean(ivlist, wtlist), 2)
def updateledger(ledgerin, timestamp, operator): ledgerdf = ledgerin ledger = p4fns.filterdf(ledgerin[1:], PLS, 'INSTRUMENT', ['OPTIDX', 'OPTSTK', 'FUTIVX', 'FUTSTK', 'FUTIDX']) ledger = p4fns.filterts(ledger, PLS, 'EXPIRY_DT', timestamp, operator) appenddf = [] for row in ledger: instrument = row[PLS['INSTRUMENT']] symbol = row[PLS['SYMBOL']] optiontyp = row[PLS['OPTION_TYP']] expirydt = row[PLS['EXPIRY_DT']] strikepr = row[PLS['STRIKE_PR']] idf = p4fns.filterdf(ledger, PLS, 'INSTRUMENT', [instrument]) idf = p4fns.filterdf(idf, PLS, 'SYMBOL', [symbol]) idf = p4fns.filterdf(idf, PLS, 'OPTION_TYP', [optiontyp]) idf = p4fns.filterdf(idf, PLS, 'EXPIRY_DT', [expirydt]) idf = p4fns.filterdf(idf, PLS, 'STRIKE_PR', [strikepr]) cumvol = 0 for irow in idf: cumvol = cumvol + irow[PLS['VOLUME']] adf = p4fns.filterdf(appenddf, PLS, 'INSTRUMENT', [instrument]) adf = p4fns.filterdf(adf, PLS, 'SYMBOL', [symbol]) adf = p4fns.filterdf(adf, PLS, 'OPTION_TYP', [optiontyp]) adf = p4fns.filterdf(adf, PLS, 'EXPIRY_DT', [expirydt]) adf = p4fns.filterdf(adf, PLS, 'STRIKE_PR', [strikepr]) appvol = 0 for prow in adf: appvol = appvol + prow[PLS['VOLUME']] if (appvol + cumvol != 0): expvalue = float( p4fns.findvalue(expirydt, instrument, symbol, optiontyp, expirydt, strikepr, 'CLOSE')) appenddf = appendledger(appenddf, expirydt, symbol, instrument, optiontyp, expirydt,\ strikepr, (-appvol-cumvol), expvalue) ledgerdf = ledgerdf + appenddf return ledgerdf
## Calculate Time to Expiry ## ============================================================================================= ## srow[PDS['T2E']] = (dp.parse(trow[PDT['EXPIRY_DT']]) - dp.parse(trow[PDT['TIMESTAMP']])).days ## Calculate Implied Volatility ## ============================================================================================= ## instrument = trow[PDT['INSTRUMENT']] strikepr = float(trow[PDT['STRIKE_PR']]) optyp = trow[PDT['OPTION_TYP']] expirydt = trow[PDT['EXPIRY_DT']] opprice = float(trow[PDT['CLOSE']]) days2exp = srow[PDS['T2E']] if (instrument == 'OPTSTK') and (symbol in eqclist): ulprice = float(p4fns.filterdf(p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR+symbol+CSV),\ PQS, 'SERIES', REGEQSERIES), PQS, 'TIMESTAMP', [timestamp])[-1][PQS['CLOSE']]) impvol = p4fns.ivcalc(optyp, ulprice, strikepr, opprice, days2exp) elif (instrument == 'OPTIDX') and (symbol in ixclist): ulprice = float(p4fns.filterdf(p4fns.read_csv(NSEIXSDBDIR+symbol+CSV),\ PXS, 'TIMESTAMP', [timestamp])[-1][PXS['CLOSE']]) impvol = p4fns.ivcalc(optyp, ulprice, strikepr, opprice, days2exp) else: impvol = 0 srow[PDS['IV']] = impvol ## Calculate Option Distance ## ============================================================================================= ## if ((instrument == 'OPTSTK') and (symbol in eqclist)) or \ ((instrument == 'OPTIDX') and (symbol in ixclist)): subdf = [] for xrow in dvdf: