def __init__(self, A_st=None, atoms=None, symmetrynumber=None, inertia=None, geometry=None, vib_wavenumbers=None, potentialenergy=None, **kwargs): super().__init__(atoms=atoms, symmetrynumber=symmetrynumber, geometry=geometry, vib_wavenumbers=vib_wavenumbers, potentialenergy=potentialenergy, **kwargs) self.A_st = A_st self.atoms = atoms self.geometry = geometry self.symmetrynumber = symmetrynumber self.inertia = inertia self.etotal = potentialenergy self.vib_energies = c.wavenumber_to_energy(np.array(vib_wavenumbers)) self.theta = np.array(self.vib_energies) / c.kb('eV/K') self.zpe = sum(np.array(self.vib_energies)/2.) *\ c.convert_unit(from_='eV', to='kcal')*c.Na if np.sum(self.vib_energies) != 0: self.q_vib = np.product( np.divide(1, (1 - np.exp(-self.theta / c.T0('K'))))) if self.phase == 'G': if self.inertia is not None: self.I3 = self.inertia else: self.I3 = atoms.get_moments_of_inertia() *\ c.convert_unit(from_='A2', to='m2') *\ c.convert_unit(from_='amu', to='kg') self.T_I = c.h('J s')**2 / (8 * np.pi**2 * c.kb('J/K')) if self.phase == 'G': Irot = np.max(self.I3) if self.geometry == 'nonlinear': self.q_rot = np.sqrt(np.pi*Irot)/self.symmetrynumber *\ (c.T0('K')/self.T_I)**(3./2.) else: self.q_rot = (c.T0('K') * Irot / self.symmetrynumber) / self.T_I else: self.q_rot = 0. if self.A_st is not None: self.MW = mw(self.elements) * c.convert_unit(from_='g', to='kg') / c.Na self.q_trans2D = self.A_st * (2 * np.pi * self.MW * c.kb('J/K') * c.T0('K')) / c.h('J s')**2
def get_SoR(self, T, P=c.P0('bar')): """Calculates the dimensionless entropy :math:`\\frac{S^{trans}}{R}=1+\\frac{n_{degrees}}{2}+\\log\\bigg(\\big( \\frac{2\\pi mk_bT}{h^2})^\\frac{n_{degrees}}{2}\\frac{RT}{PN_a}\\bigg)` Parameters ---------- T : float Temperature in K P : float, optional Pressure (bar) or pressure-like quantity. Default is atmospheric pressure Returns ------- SoR_trans : float Translational dimensionless entropy """ V = self.get_V(T=T, P=P) unit_mass = self.molecular_weight *\ c.convert_unit(from_='g', to='kg')/c.Na return 1. + float(self.n_degrees)/2. \ + np.log((2.*np.pi*unit_mass*c.kb('J/K')*T/c.h('J s')**2) ** (float(self.n_degrees)/2.)*V/c.Na)
def _get_SoR_RRHO(self, T, vib_inertia): """Calculates the dimensionless RRHO contribution to entropy Parameters ---------- T : float Temperature in K vib_inertia : float Vibrational inertia in kg m2 Returns ------- SoR_RHHO : float Dimensionless entropy of Rigid Rotor Harmonic Oscillator """ return 0.5 + np.log( (8. * np.pi**3 * vib_inertia * c.kb('J/K') * T / c.h('J s')**2)** 0.5)
def get_q(self, T, P=c.P0('bar')): """Calculates the partition function :math:`q_{trans} = \\bigg(\\frac{2\\pi \\sum_{i}^{atoms}m_ikT}{h^2} \\bigg)^\\frac {n_{degrees}} {2}V` Parameters ---------- T : float Temperature in K P : float, optional Pressure (bar) or pressure-like quantity. Default is atmospheric pressure Returns ------- q_trans : float Translational partition function """ V = self.get_V(T=T, P=P) unit_mass = self.molecular_weight *\ c.convert_unit(from_='g', to='kg')/c.Na return V*(2*np.pi*c.kb('J/K')*T*unit_mass/c.h('J s')**2) \ ** (float(self.n_degrees)/2.)
def test_h(self): self.assertEqual(c.h('J s', bar=False), 6.626070040e-34) self.assertEqual(c.h('J s', bar=True), 6.626070040e-34 / (2. * np.pi)) with self.assertRaises(KeyError): c.h('arbitrary unit')