コード例 #1
0
ファイル: transform.py プロジェクト: sandyhouse/Paddle
    def _domain(self):
        domain = self.transforms[0]._domain

        # Compute the lower bound of input dimensions for chain transform.
        #
        # Suppose the dimensions of input tensor is N, and chain [t0,...ti,...tm],
        # ti(in) denotes ti.domain.event_rank, ti(out) denotes ti.codomain.event_rank,
        # delta(ti) denotes (ti(out) - ti(in)).
        # For transform ti, N shoud satisfy the constraint:
        #   N + delta(t0) + delta(t1)...delta(t(i-1)) >= ti(in)
        # So, for all transform in chain, N shoud satisfy follow constraints:
        #   t0: N >= t0(in)
        #   t1: N >= t1(in) - delta(t0)
        #   ...
        #   tm: N >= tm(in) - ... - delta(ti) - ... - delta(t0)
        #
        # Above problem can be solved more effectively use dynamic programming.
        # Let N(i) denotes lower bound of transform ti, than the state
        # transition equation is:
        #   N(i) = max{N(i+1)-delta(ti), ti(in)}
        event_rank = self.transforms[-1]._codomain.event_rank
        for t in reversed(self.transforms):
            event_rank -= t._codomain.event_rank - t._domain.event_rank
            event_rank = max(event_rank, t._domain.event_rank)

        return variable.Independent(domain, event_rank - domain.event_rank)
コード例 #2
0
ファイル: transform.py プロジェクト: sandyhouse/Paddle
    def _codomain(self):
        codomain = self.transforms[-1]._codomain

        event_rank = self.transforms[0]._domain.event_rank
        for t in self.transforms:
            event_rank += t._codomain.event_rank - t._domain.event_rank
            event_rank = max(event_rank, t._codomain.event_rank)

        return variable.Independent(codomain, event_rank - codomain.event_rank)
コード例 #3
0
 def setUp(self):
     self._var = variable.Independent(self.base, self.rank)
コード例 #4
0
ファイル: transform.py プロジェクト: sandyhouse/Paddle
 def _domain(self):
     return variable.Independent(variable.real, 1)
コード例 #5
0
ファイル: transform.py プロジェクト: sandyhouse/Paddle
 def _codomain(self):
     return variable.Independent(variable.real, len(self._out_event_shape))
コード例 #6
0
ファイル: transform.py プロジェクト: sandyhouse/Paddle
 def _codomain(self):
     return variable.Independent(self._base._codomain,
                                 self._reinterpreted_batch_rank)
コード例 #7
0
class TestChainTransform(unittest.TestCase):
    @param.param_func([(paddle.distribution.Transform, TypeError),
                       ([0], TypeError)])
    def test_init_exception(self, transforms, exception):
        with self.assertRaises(exception):
            paddle.distribution.ChainTransform(transforms)

    @param.param_func(((transform.ChainTransform(
        (transform.AbsTransform(),
         transform.AffineTransform(paddle.rand([1]), paddle.rand([1])))),
                        False), (transform.ChainTransform((
                            transform.AffineTransform(paddle.rand([1]),
                                                      paddle.rand([1])),
                            transform.ExpTransform(),
                        )), True)))
    def test_is_injective(self, chain, expected):
        self.assertEqual(chain._is_injective(), expected)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 1),
         transform.IndependentTransform(transform.ExpTransform(), 10),
         transform.IndependentTransform(transform.ExpTransform(), 8))),
                        variable.Independent(variable.real, 10)), ))
    def test_domain(self, input, expected):
        self.assertIsInstance(input._domain, type(expected))
        self.assertEqual(input._domain.event_rank, expected.event_rank)
        self.assertEqual(input._domain.is_discrete, expected.is_discrete)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 9),
         transform.IndependentTransform(transform.ExpTransform(), 4),
         transform.IndependentTransform(transform.ExpTransform(), 5))),
                        variable.Independent(variable.real, 9)), ))
    def test_codomain(self, input, expected):
        self.assertIsInstance(input._codomain, variable.Independent)
        self.assertEqual(input._codomain.event_rank, expected.event_rank)
        self.assertEqual(input._codomain.is_discrete, expected.is_discrete)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(1.0)),
             transform.ExpTransform())), np.array([0., 1., 2., 3.]),
         np.exp(np.array([0., 1., 2., 3.]) * 1.0)),
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]),
         np.tanh(np.exp(np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]))))
    ])
    def test_forward(self, chain, input, expected):
        np.testing.assert_allclose(chain.forward(
            paddle.to_tensor(input)).numpy(),
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), np.array([0., 1., 2., 3.]),
         np.log(np.array([0., 1., 2., 3.])) / (-1.0)),
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]),
         np.log(np.arctanh(np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]))))
    ])
    def test_inverse(self, chain, input, expected):
        np.testing.assert_allclose(chain.inverse(
            paddle.to_tensor(input)).numpy(),
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.PowerTransform(paddle.to_tensor(2.0)))),
         np.array([1., 2., 3.]), np.log(2. * np.array([1., 2., 3.]))),
    ])
    def test_forward_log_det_jacobian(self, chain, input, expected):
        np.testing.assert_allclose(chain.forward_log_det_jacobian(
            paddle.to_tensor(input)).numpy(),
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_forward_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_inverse_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.inverse_shape(shape), expected_shape)
コード例 #8
0
class TestChainTransform(unittest.TestCase):
    @param.param_func(((transform.ChainTransform(
        (transform.AbsTransform(),
         transform.AffineTransform(paddle.rand([1]), paddle.rand([1])))),
                        False), (transform.ChainTransform((
                            transform.AffineTransform(paddle.rand([1]),
                                                      paddle.rand([1])),
                            transform.ExpTransform(),
                        )), True)))
    def test_is_injective(self, chain, expected):
        self.assertEqual(chain._is_injective(), expected)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 1),
         transform.IndependentTransform(transform.ExpTransform(), 10),
         transform.IndependentTransform(transform.ExpTransform(), 8))),
                        variable.Independent(variable.real, 10)), ))
    def test_domain(self, input, expected):
        self.assertIsInstance(input._domain, type(expected))
        self.assertEqual(input._domain.event_rank, expected.event_rank)
        self.assertEqual(input._domain.is_discrete, expected.is_discrete)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 9),
         transform.IndependentTransform(transform.ExpTransform(), 4),
         transform.IndependentTransform(transform.ExpTransform(), 5))),
                        variable.Independent(variable.real, 9)), ))
    def test_codomain(self, input, expected):
        self.assertIsInstance(input._codomain, variable.Independent)
        self.assertEqual(input._codomain.event_rank, expected.event_rank)
        self.assertEqual(input._codomain.is_discrete, expected.is_discrete)

    @param.param_func([
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]),
         np.tanh(np.exp(np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]))))
    ])
    def test_forward(self, chain, input, expected):
        exe = paddle.static.Executor()
        sp = paddle.static.Program()
        mp = paddle.static.Program()
        with paddle.static.program_guard(mp, sp):
            t = chain
            static_input = paddle.static.data('input', input.shape,
                                              input.dtype)
            output = t.forward(static_input)
        exe.run(sp)
        [output] = exe.run(mp, feed={'input': input}, fetch_list=[output])
        np.testing.assert_allclose(output,
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]),
         np.log(np.arctanh(np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]))))
    ])
    def test_inverse(self, chain, input, expected):
        exe = paddle.static.Executor()
        sp = paddle.static.Program()
        mp = paddle.static.Program()
        with paddle.static.program_guard(mp, sp):
            t = chain
            static_input = paddle.static.data('input', input.shape,
                                              input.dtype)
            output = t.inverse(static_input)
        exe.run(sp)
        [output] = exe.run(mp, feed={'input': input}, fetch_list=[output])
        np.testing.assert_allclose(output,
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.full([1], 0.0),
                                       paddle.full([1], -1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_forward_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.full([1], 0.0),
                                       paddle.full([1], -1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_inverse_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)