コード例 #1
0
    def simple_net(self):
        d0 = layers.data(
            "d0", shape=[10], append_batch_size=False, dtype='float32')
        d1 = layers.data(
            "d1", shape=[10], append_batch_size=False, dtype='float32')
        d2 = layers.data(
            "d2", shape=[10], append_batch_size=False, dtype='float32')
        # fill_constant npu op doesn't support int64
        i = layers.zeros(shape=[1], dtype='int32')
        i = layers.cast(i, 'int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
        mem_array = layers.array_write(x=init, i=i)
        data_array = layers.array_write(x=d0, i=i)
        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)
        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)
        i = layers.zeros(shape=[1], dtype='int32')
        i = layers.cast(i, 'int64')
        i.stop_gradient = True
        array_len = layers.fill_constant(shape=[1], dtype='int32', value=5)
        array_len = layers.cast(array_len, 'int64')
        array_len.stop_gradient = True
        cond = layers.ones(shape=[1], dtype='int32')
        cond = layers.cast(cond, 'bool')
        j = layers.fill_constant(shape=[1], dtype='int32', value=1)
        j = layers.cast(j, 'int64')
        j.stop_gradient = True
        array_len2 = layers.fill_constant(shape=[1], dtype='int32', value=3)
        array_len2 = layers.cast(array_len2, 'int64')
        array_len2.stop_gradient = True
        cond2 = layers.logical_or(x=j, y=array_len2)
        cond2 = layers.ones(shape=[1], dtype='int32')
        cond2 = layers.cast(cond2, 'bool')
        while_op = layers.While(cond=cond)
        while_op2 = layers.While(cond=cond2)
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])

            i = layers.increment(x=i, in_place=True)
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)

            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)
        sum_result = layers.array_read(array=mem_array, i=j)
        loss = layers.mean(sum_result)
        return loss, sum_result
コード例 #2
0
ファイル: test_while_op.py プロジェクト: pyqt1/MyPaddle
 def test_exceptions(self):
     i = layers.zeros(shape=[2], dtype='int64')
     array_len = layers.fill_constant(shape=[2], dtype='int64', value=1)
     cond = layers.less_than(x=i, y=array_len)
     with self.assertRaises(TypeError):
         layers.While(cond=cond)
     cond = layers.cast(cond, dtype='float64')
     with self.assertRaises(TypeError):
         layers.While(cond=cond)
コード例 #3
0
def build_and_run_program(place, batch_size, beam_size, stop_gradient=False):
    fluid.default_startup_program().random_seed = 1
    fluid.default_main_program().random_seed = 1
    np.random.seed(2)

    x = layers.assign(
        np.random.rand(batch_size, beam_size, 32).astype("float32"))
    indices = fluid.data(shape=[None, beam_size], dtype="int64", name="indices")
    step_idx = layers.fill_constant(
        shape=[1], dtype="int64", value=0, force_cpu=True)
    max_len = layers.fill_constant(
        shape=[1], dtype="int64", value=10, force_cpu=True)
    cond = layers.less_than(x=step_idx, y=max_len)
    while_op = layers.While(cond)
    scores = layers.array_write(x, step_idx)
    with while_op.block():
        bs = layers.cast(layers.shape(x)[0], "int64")
        for _ in range(20):
            bs = layers.cast(bs, 'int64')
        bs.stop_gradient = stop_gradient
        batch_pos = layers.expand(
            layers.unsqueeze(
                layers.range(
                    0, bs, 1, dtype=bs.dtype), [1]), [1, beam_size])
        topk_coordinates = layers.stack([batch_pos, indices], axis=2)
        topk_coordinates.stop_gradient = stop_gradient
        score = layers.gather_nd(x, topk_coordinates)
        layers.increment(x=step_idx, value=1.0, in_place=True)
        layers.array_write(score, i=step_idx, array=scores)
        length_cond = layers.less_than(x=step_idx, y=max_len)
        layers.assign(length_cond, cond)

    out = layers.tensor_array_to_tensor(scores, axis=0, use_stack=True)[0]
    loss = layers.reduce_mean(out)
    opt = fluid.optimizer.Adam(0.01)
    opt.minimize(loss)
    exe = fluid.Executor(place)
    data = np.random.random_integers(
        low=0, high=beam_size - 1, size=(batch_size, beam_size)).astype("int64")
    loss_val, = exe.run(feed={"indices": data}, fetch_list=[loss])

    return loss_val
コード例 #4
0
def _push_to_stack(gmr_desc, gmr_pos, gmr_lens, gmr_stack_info):
    """push grammar id in gmr_desc from gmr_pos to gmr_lens to
    gmr_stack. and update step_gmr_pos

    Args:
        gmr_desc (TYPE): NULL
        gmr_pos (TYPE): NULL
        gmr_lens (TYPE): NULL
        gmr_stack_info (tuple): [in/out] (gmr_stack, gmr_stack_pos)

    Returns: tuple (gmr_stack, gmr_stack_pos)

    Raises: NULL
    """
    gmr_stack, gmr_stack_pos = gmr_stack_info
    mv_step = layers.cast(layers.greater_than(gmr_lens,
                                              layers.zeros_like(gmr_lens)),
                          dtype=gmr_lens.dtype)
    gmr_mv_pos = layers.elementwise_sub(gmr_lens, mv_step)

    cond = layers.reduce_any(layers.greater_than(gmr_mv_pos, gmr_pos))
    while_op = layers.While(cond)
    with while_op.block():
        gmr_ids = nn_utils.batch_gather(gmr_desc, gmr_mv_pos)
        gmr_stack_tmp, gmr_stack_pos_tmp = data_structure.Stack.push(
            gmr_stack_info, gmr_ids, in_place=False)

        mv_cond = layers.greater_than(gmr_mv_pos, gmr_pos)
        gmr_mv_pos_tmp = fluider.elementwise_sub(gmr_mv_pos,
                                                 mv_cond,
                                                 force=True)
        new_gmr_stack, new_gmr_stack_pos = nn_utils.ifelse(
            mv_cond, [gmr_stack_tmp, gmr_stack_pos_tmp],
            [gmr_stack, gmr_stack_pos])
        layers.utils.map_structure(layers.assign,
                                   [new_gmr_stack, new_gmr_stack_pos],
                                   [gmr_stack, gmr_stack_pos])
        layers.assign(gmr_mv_pos_tmp, gmr_mv_pos)
        layers.assign(
            layers.reduce_any(layers.greater_than(gmr_mv_pos, gmr_pos)), cond)
    return gmr_stack, gmr_stack_pos
コード例 #5
0
    def beam_search():
        max_len = layers.fill_constant(shape=[1],
                                       dtype=start_tokens.dtype,
                                       value=max_out_len,
                                       force_cpu=True)
        step_idx = layers.fill_constant(shape=[1],
                                        dtype=start_tokens.dtype,
                                        value=0,
                                        force_cpu=True)
        cond = layers.less_than(x=step_idx,
                                y=max_len)  # default force_cpu=True
        while_op = layers.While(cond)
        # array states will be stored for each step.
        ids = layers.array_write(layers.reshape(start_tokens, (-1, 1)),
                                 step_idx)
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps in decoder self-attention
        # and static encoder output projections in encoder-decoder attention
        # to reduce redundant computation.
        caches = [
            {
                "k":  # for self attention
                layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, n_head, 0, d_key],
                    dtype=enc_output.dtype,
                    value=0),
                "v":  # for self attention
                layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, n_head, 0, d_value],
                    dtype=enc_output.dtype,
                    value=0),
                "static_k":  # for encoder-decoder attention
                layers.create_tensor(dtype=enc_output.dtype),
                "static_v":  # for encoder-decoder attention
                layers.create_tensor(dtype=enc_output.dtype)
            } for i in range(n_layer)
        ]

        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            # Since beam_search_op dosen't enforce pre_ids' shape, we can do
            # inplace reshape here which actually change the shape of pre_ids.
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # gather cell states corresponding to selected parent
            pre_src_attn_bias = layers.gather(trg_src_attn_bias,
                                              index=parent_idx)
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_src_attn_bias,  # cann't use lod tensor here
                    value=1,
                    shape=[-1, 1, 1],
                    dtype=pre_ids.dtype),
                y=step_idx,
                axis=0)
            logits = wrap_decoder(trg_vocab_size,
                                  max_in_len,
                                  n_layer,
                                  n_head,
                                  d_key,
                                  d_value,
                                  d_model,
                                  d_inner_hid,
                                  prepostprocess_dropout,
                                  attention_dropout,
                                  relu_dropout,
                                  preprocess_cmd,
                                  postprocess_cmd,
                                  weight_sharing,
                                  dec_inputs=(pre_ids, pre_pos, None,
                                              pre_src_attn_bias),
                                  enc_output=enc_output,
                                  caches=caches,
                                  gather_idx=parent_idx,
                                  bos_idx=bos_idx)
            # intra-beam topK
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
            accu_scores = layers.elementwise_add(x=layers.log(topk_scores),
                                                 y=pre_scores,
                                                 axis=0)
            # beam_search op uses lod to differentiate branches.
            accu_scores = layers.lod_reset(accu_scores, pre_ids)
            # topK reduction across beams, also contain special handle of
            # end beams and end sentences(batch reduction)
            selected_ids, selected_scores, gather_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx,
                return_parent_idx=True)
            layers.increment(x=step_idx, value=1.0, in_place=True)
            # cell states(caches) have been updated in wrap_decoder,
            # only need to update beam search states here.
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(gather_idx, parent_idx)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=eos_idx)
        return finished_ids, finished_scores
コード例 #6
0
    def call(self, global_img_feat, p_img_feat, embedding_fn, words=None):
        # 图片特征
        img_feat = layers.fc(p_img_feat, self.hid_size, num_flatten_dims=2, act='tanh')  # [batch, k, hid]
        img_feat_emb = layers.fc(p_img_feat, self.hid_size, num_flatten_dims=2)

        if self.mode == 'eval':
            word = layers.fill_constant_batch_size_like(global_img_feat, [-1],
                                                        dtype='int64',
                                                        value=config.data['start_idx'])
        else:
            words = layers.transpose(words, [1, 0])  # [seq, batch]
            words.stop_gradient = True
        # lstm 初始化
        hid, cell = create_zero_state(global_img_feat), create_zero_state(global_img_feat)

        # While loop 参数初始化
        mx = decoder_config['sentence_length'] - 1 if self.mode == 'train' else decoder_config['infer_max_length']
        if self.mode == 'eval':
            mx = decoder_config['infer_max_length']
            while_op_output = layers.create_array('int64')
        else:
            while_op_output = layers.create_array('float32')
        max_step = layers.fill_constant(shape=[1], dtype='int64', value=mx)
        step = layers.fill_constant(shape=[1], dtype='int64', value=0)
        cond = layers.less_than(step, max_step)
        while_op = layers.While(cond)

        with while_op.block():
            if self.mode == 'train':
                st = layers.cast(step, 'int32')
                word = layers.slice(words, axes=[0], starts=st, ends=st + 1)
                word = layers.squeeze(word, [0])
                word.stop_gradient = True

            word_emb = embedding_fn(word)
            # 这里可能用+效果更好?
            xt = layers.concat([word_emb, global_img_feat], axis=-1)  # [batch, feat]
            h, c = layers.lstm_unit(xt, hid, cell, param_attr=fluid.ParamAttr('lstm_w'),
                                    bias_attr=fluid.ParamAttr('lstm_b'))
            p_word_emb = layers.fc(xt, size=self.hid_size)
            p_hidden = layers.fc(hid, size=self.hid_size)
            sentinel_gate = layers.sigmoid(p_word_emb + p_hidden)  # [batch, hidden]
            sentinel = layers.elementwise_mul(sentinel_gate, layers.tanh(c))  # [batch, hidden]

            layers.assign(h, hid)
            layers.assign(c, cell)

            k = layers.shape(p_img_feat)[1]

            p_hid = layers.fc(h, self.hid_size, act='tanh')
            # attention 部分
            #     alpha
            hid_emb = layers.fc(p_hid, self.hid_size)  # [batch, hidden]
            exp_hid_emb = layers.expand(layers.unsqueeze(hid_emb, 1), [1, k + 1, 1])  # [batch, k+1, hidden]
            sentinel_emb = layers.unsqueeze(layers.fc(sentinel, self.hid_size), axes=1)  # [batch, 1, hidden]
            feat_emb = layers.concat([img_feat_emb, sentinel_emb], axis=1)  # [batch, k+1, hidden]
            z = layers.tanh(feat_emb + exp_hid_emb)  # [batch, k+1, 1]
            alpha = layers.fc(z, size=1, num_flatten_dims=2, act='softmax')  # [batch, k+1, 1]

            #     context vector

            context = layers.concat([img_feat, layers.unsqueeze(sentinel, axes=1)], axis=1)  # [batch, k+1, hidden]
            context = layers.elementwise_mul(context, alpha, axis=0)
            context = layers.reduce_mean(context, dim=1)  # [batch, hidden]

            out = layers.fc(context + p_hid, self.hid_size, act='tanh')

            word_pred = weight_tying_fc(out)  # [batch, vocab]

            if self.mode == 'eval':
                next_word = layers.argmax(word_pred, axis=-1)
                layers.assign(next_word, word)
                next_word = layers.cast(next_word, 'float32')
                layers.array_write(next_word, step, array=while_op_output)
            else:
                layers.array_write(word_pred, step, array=while_op_output)
            layers.increment(step)
            layers.less_than(step, max_step, cond=cond)
        if self.mode == 'train':
            output_time_major, _ = layers.tensor_array_to_tensor(while_op_output, axis=0, use_stack=True)
            output = layers.transpose(output_time_major, [1, 0, 2])
        else:
            output_time_major = layers.tensor_array_to_tensor(while_op_output, axis=0, use_stack=True)[0]
            output = layers.transpose(output_time_major, [1, 0])

        return output
コード例 #7
0
    def run_main(self, place, with_data_parallel):
        self.place = place
        self.with_data_parallel = with_data_parallel

        if not core.is_compiled_with_cuda() and isinstance(
                self.place, core.CUDAPlace):
            return

        if isinstance(self.place, core.CUDAPlace):
            device_cnt = core.get_cuda_device_count(
            ) if self.with_data_parallel else 1
        else:
            device_cnt = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count())
            ) if self.with_data_parallel else 1

        d0 = layers.data("d0",
                         shape=[10],
                         append_batch_size=False,
                         dtype='float32')
        d1 = layers.data("d1",
                         shape=[10],
                         append_batch_size=False,
                         dtype='float32')
        d2 = layers.data("d2",
                         shape=[10],
                         append_batch_size=False,
                         dtype='float32')

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True

        init = layers.zeros(shape=[10], dtype='float32')
        mem_array = layers.array_write(x=init, i=i)
        data_array = layers.array_write(x=d0, i=i)

        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)

        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True

        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
        array_len.stop_gradient = True
        cond = layers.less_than(x=i, y=array_len)

        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True

        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
        cond2 = layers.less_than(x=j, y=array_len2)

        while_op = layers.While(cond=cond)
        while_op2 = layers.While(cond=cond2)
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            d = layers.reshape(d, shape=[10])
            prev = layers.reshape(prev, shape=[10])
            result = layers.sums(input=[d, prev])

            i = layers.increment(x=i, in_place=True)
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)
            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                d2 = layers.reshape(d2, shape=[10])
                prev2 = layers.reshape(prev2, shape=[10])
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)

        sum_result = layers.array_read(array=mem_array, i=j)
        sum_result.persistable = True
        tmp = layers.unsqueeze(sum_result, axes=[0])
        tmp = layers.expand(tmp, expand_times=[10, 1])
        fc = layers.fc(tmp, size=256)
        loss = layers.mean(sum_result)

        optim = fluid.optimizer.Adam(learning_rate=1e-3)
        optim.minimize(loss)

        exe = Executor(self.place)
        exe.run(fluid.default_startup_program())

        prog = fluid.default_main_program()
        if self.with_data_parallel:
            prog = compiler.CompiledProgram(
                fluid.default_main_program()).with_data_parallel(
                    loss_name=loss.name)

        for _ in range(5):
            d = []
            for i in range(3):
                tmp = numpy.random.random(size=[10]).astype('float32')
                if not self.with_data_parallel:
                    d.append(tmp)
                else:
                    d.append(numpy.array([tmp] * device_cnt))

            outs = exe.run(program=prog,
                           feed={
                               'd0': d[0],
                               'd1': d[1],
                               'd2': d[2]
                           },
                           fetch_list=[sum_result])
            self.assertAlmostEqual(numpy.sum(d),
                                   numpy.sum(outs[0]),
                                   delta=0.01)
コード例 #8
0
def _do_beam_search(trg_vocab_size, max_in_len, n_layer, n_head, d_key,
                    d_value, d_model, d_inner_hid, prepostprocess_dropout,
                    attention_dropout, relu_dropout, preprocess_cmd,
                    postprocess_cmd, weight_sharing, beam_size, max_len,
                    bos_idx, eos_idx, ids, scores, parent_idx,
                    trg_src_attn_bias, caches, enc_output, step_idx):
    """
        do beam search
    """
    cond = layers.less_than(x=step_idx, y=max_len)  # default force_cpu=True
    while_op = layers.While(cond)
    with while_op.block():
        pre_ids = layers.array_read(array=ids, i=step_idx)
        # Since beam_search_op dosen't enforce pre_ids' shape, we can do
        # inplace reshape here which actually change the shape of pre_ids.
        pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
        pre_scores = layers.array_read(array=scores, i=step_idx)
        # gather cell states corresponding to selected parent
        pre_src_attn_bias = layers.gather(trg_src_attn_bias, index=parent_idx)
        pre_pos = layers.elementwise_mul(
            x=layers.fill_constant_batch_size_like(
                input=pre_src_attn_bias,  # cann't use lod tensor here
                value=1,
                shape=[-1, 1, 1],
                dtype=pre_ids.dtype),
            y=step_idx,
            axis=0)
        logits = wrap_decoder(trg_vocab_size,
                              max_in_len,
                              n_layer,
                              n_head,
                              d_key,
                              d_value,
                              d_model,
                              d_inner_hid,
                              prepostprocess_dropout,
                              attention_dropout,
                              relu_dropout,
                              preprocess_cmd,
                              postprocess_cmd,
                              weight_sharing,
                              dec_inputs=(pre_ids, pre_pos, None,
                                          pre_src_attn_bias),
                              enc_output=enc_output,
                              caches=caches,
                              gather_idx=parent_idx,
                              bos_idx=bos_idx)
        # intra-beam topK
        topk_scores, topk_indices = layers.topk(input=layers.softmax(logits),
                                                k=beam_size)
        accu_scores = layers.elementwise_add(x=layers.log(topk_scores),
                                             y=pre_scores,
                                             axis=0)
        # beam_search op uses lod to differentiate branches.
        accu_scores = layers.lod_reset(accu_scores, pre_ids)
        # topK reduction across beams, also contain special handle of
        # end beams and end sentences(batch reduction)
        selected_ids, selected_scores, gather_idx = layers.beam_search(
            pre_ids=pre_ids,
            pre_scores=pre_scores,
            ids=topk_indices,
            scores=accu_scores,
            beam_size=beam_size,
            end_id=eos_idx,
            return_parent_idx=True)
        layers.increment(x=step_idx, value=1.0, in_place=True)
        # cell states(caches) have been updated in wrap_decoder,
        # only need to update beam search states here.
        layers.array_write(selected_ids, i=step_idx, array=ids)
        layers.array_write(selected_scores, i=step_idx, array=scores)
        layers.assign(gather_idx, parent_idx)
        layers.assign(pre_src_attn_bias, trg_src_attn_bias)
        length_cond = layers.less_than(x=step_idx, y=max_len)
        finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
        layers.logical_and(x=length_cond, y=finish_cond, out=cond)
コード例 #9
0
    def beam_search():
        max_len = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=max_out_len)
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        # array states will be stored for each step.
        ids = layers.array_write(start_tokens, step_idx)
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
        caches = [{
            "k": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
                dtype=enc_output.dtype,
                value=0),
            "v": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
                dtype=enc_output.dtype,
                value=0)
        } for i in range(n_layer)]
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
            pre_src_attn_bias = layers.sequence_expand(
                x=trg_src_attn_bias, y=pre_scores)
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
            pre_caches = [{
                "k": layers.sequence_expand(
                    x=cache["k"], y=pre_scores),
                "v": layers.sequence_expand(
                    x=cache["v"], y=pre_scores),
            } for cache in caches]
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_enc_output,  # cann't use pre_ids here since it has lod
                    value=1,
                    shape=[-1, 1],
                    dtype=pre_ids.dtype),
                y=layers.increment(
                    x=step_idx, value=1.0, in_place=False),
                axis=0)
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                dropout_rate,
                weight_sharing,
                dec_inputs=(
                    pre_ids, pre_pos, None, pre_src_attn_bias, trg_data_shape,
                    slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape,
                    src_attn_pre_softmax_shape, src_attn_post_softmax_shape),
                enc_output=pre_enc_output,
                caches=pre_caches)
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx)
            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
            layers.assign(
                layers.elementwise_add(
                    x=slf_attn_pre_softmax_shape,
                    y=attn_pre_softmax_shape_delta),
                slf_attn_pre_softmax_shape)
            layers.assign(
                layers.elementwise_add(
                    x=slf_attn_post_softmax_shape,
                    y=attn_post_softmax_shape_delta),
                slf_attn_post_softmax_shape)

            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=eos_idx)
        return finished_ids, finished_scores
コード例 #10
0
    def test_simple_forward(self):
        d0 = layers.data("d0",
                         shape=[10],
                         append_batch_size=False,
                         dtype='float32')
        d1 = layers.data("d1",
                         shape=[10],
                         append_batch_size=False,
                         dtype='float32')
        d2 = layers.data("d2",
                         shape=[10],
                         append_batch_size=False,
                         dtype='float32')

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True

        init = layers.zeros(shape=[10], dtype='float32')
        mem_array = layers.array_write(x=init, i=i)
        data_array = layers.array_write(x=d0, i=i)

        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)

        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)

        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True

        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
        array_len.stop_gradient = True
        cond = layers.less_than(x=i, y=array_len)

        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True

        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
        cond2 = layers.less_than(x=j, y=array_len2)

        while_op = layers.While(cond=cond)
        while_op2 = layers.While(cond=cond2)
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])

            i = layers.increment(x=i, in_place=True)
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)

            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)

        sum_result = layers.array_read(array=mem_array, i=j)
        loss = layers.mean(sum_result)

        append_backward(loss)

        cpu = core.CPUPlace()
        exe = Executor(cpu)
        d = []

        for i in range(3):
            d.append(numpy.random.random(size=[10]).astype('float32'))

        outs = exe.run(feed={
            'd0': d[0],
            'd1': d[1],
            'd2': d[2]
        },
                       fetch_list=[sum_result])
        self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
コード例 #11
0
    def gru_attention_infer(self, decoder_boot, max_length, char_num,
                            word_vector_dim, encoded_vector, encoded_proj,
                            decoder_size):
        init_state = decoder_boot
        beam_size = 1
        array_len = layers.fill_constant(
            shape=[1], dtype='int64', value=max_length)
        counter = layers.zeros(shape=[1], dtype='int64', force_cpu=True)

        # fill the first element with init_state
        state_array = layers.create_array('float32')
        layers.array_write(init_state, array=state_array, i=counter)

        # ids, scores as memory
        ids_array = layers.create_array('int64')
        scores_array = layers.create_array('float32')
        rois_shape = layers.shape(init_state)
        batch_size = layers.slice(
            rois_shape, axes=[0], starts=[0], ends=[1]) + 1
        lod_level = layers.range(
            start=0, end=batch_size, step=1, dtype=batch_size.dtype)

        init_ids = layers.fill_constant_batch_size_like(
            input=init_state, shape=[-1, 1], value=0, dtype='int64')
        init_ids = layers.lod_reset(init_ids, lod_level)
        init_ids = layers.lod_append(init_ids, lod_level)

        init_scores = layers.fill_constant_batch_size_like(
            input=init_state, shape=[-1, 1], value=1, dtype='float32')
        init_scores = layers.lod_reset(init_scores, init_ids)
        layers.array_write(init_ids, array=ids_array, i=counter)
        layers.array_write(init_scores, array=scores_array, i=counter)

        full_ids = fluid.layers.fill_constant_batch_size_like(
            input=init_state, shape=[-1, 1], dtype='int64', value=1)

        cond = layers.less_than(x=counter, y=array_len)
        while_op = layers.While(cond=cond)
        with while_op.block():
            pre_ids = layers.array_read(array=ids_array, i=counter)
            pre_state = layers.array_read(array=state_array, i=counter)
            pre_score = layers.array_read(array=scores_array, i=counter)
            pre_ids_emb = layers.embedding(
                input=pre_ids,
                size=[char_num, word_vector_dim],
                dtype='float32')

            context = self.simple_attention(encoded_vector, encoded_proj,
                                            pre_state, decoder_size)

            # expand the recursive_sequence_lengths of pre_state 
            # to be the same with pre_score
            pre_state_expanded = layers.sequence_expand(pre_state, pre_score)
            context_expanded = layers.sequence_expand(context, pre_score)

            fc_1 = layers.fc(input=context_expanded,
                             size=decoder_size * 3,
                             bias_attr=False,
                             name="rnn_fc1")

            fc_2 = layers.fc(input=pre_ids_emb,
                             size=decoder_size * 3,
                             bias_attr=False,
                             name="rnn_fc2")

            decoder_inputs = fc_1 + fc_2
            current_state, _, _ = layers.gru_unit(
                input=decoder_inputs,
                hidden=pre_state_expanded,
                size=decoder_size * 3)
            current_state_with_lod = layers.lod_reset(
                x=current_state, y=pre_score)
            # use score to do beam search
            current_score = layers.fc(input=current_state_with_lod,
                                      size=char_num,
                                      bias_attr=True,
                                      act='softmax',
                                      name="rnn_out_fc")
            topk_scores, topk_indices = layers.topk(current_score, k=beam_size)

            new_ids = fluid.layers.concat([full_ids, topk_indices], axis=1)
            fluid.layers.assign(new_ids, full_ids)

            layers.increment(x=counter, value=1, in_place=True)

            # update the memories
            layers.array_write(current_state, array=state_array, i=counter)
            layers.array_write(topk_indices, array=ids_array, i=counter)
            layers.array_write(topk_scores, array=scores_array, i=counter)

            # update the break condition: 
            # up to the max length or all candidates of
            # source sentences have ended.
            length_cond = layers.less_than(x=counter, y=array_len)
            finish_cond = layers.logical_not(layers.is_empty(x=topk_indices))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)
        return full_ids
コード例 #12
0
    def forward(self, inputs, use_cache=False, cache=None):
        """
        Args:
            inputs (dict): include src_ids.
                pos_ids, input_mask and max_dec_len are optional.
        """
        ######### forward context #########
        input_ids = inputs['src_ids']
        position_ids = inputs['pos_ids'] if 'pos_ids' in inputs else None
        attention_mask = inputs[
            'input_mask'] if 'input_mask' in inputs else None

        causal_mask = paddle.tensor.triu(paddle.ones(
            (paddle.shape(input_ids)[-1], paddle.shape(input_ids)[-1])) * -1e4,
                                         diagonal=1)
        if attention_mask is not None:
            tgt_pos = paddle.sum(attention_mask, axis=-1,
                                 keepdim=True).astype('int64')
            if len(attention_mask.shape) == 2:
                attention_mask = paddle.unsqueeze(attention_mask, axis=[1, 2])
            encode_mask = attention_mask + causal_mask
        else:
            encode_mask = causal_mask

        # if cached_kvs are assigned to next step in _prepare_qkv of MultiHeadAttention,
        # need to init the global caches here
        gen_caches = self._init_generation_caches(input_ids)

        logits, cached_kvs = self.model(input_ids,
                                        position_ids,
                                        encode_mask,
                                        use_cache=True,
                                        cache=gen_caches)

        next_id = paddle.argmax(logits[:, -1, :], axis=-1).reshape([-1, 1])
        ####################################

        if 'max_dec_len' not in inputs:
            max_len = layers.fill_constant([1],
                                           dtype=int_type,
                                           value=self.max_dec_len,
                                           force_cpu=True)
        else:
            max_len = inputs['max_dec_len']
        min_len = layers.fill_constant(shape=[1],
                                       dtype=int_type,
                                       value=self.min_dec_len,
                                       force_cpu=True)
        step_idx = layers.fill_constant(shape=[1],
                                        value=0,
                                        dtype='int64',
                                        force_cpu=True)

        placehold_ids = layers.fill_constant_batch_size_like(
            input=inputs["src_ids"],
            value=0,
            shape=[-1, 1],
            dtype=next_id.dtype)
        ids = layers.array_write(next_id, step_idx)

        if 'max_dec_len' in inputs:
            max_len = paddle.tensor.creation._memcpy(max_len,
                                                     place=paddle.CPUPlace())
        cond_int = paddle.full([1], 0, dtype=int_type, name="cond_int")
        cond = paddle.less_than(step_idx, max_len)

        if attention_mask is not None:
            append_mask = layers.fill_constant_batch_size_like(
                input=next_id,
                value=1,
                shape=[-1, 1, 1, 1],
                dtype=attention_mask.dtype)

        while_op = layers.While(cond, is_test=True)
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            if attention_mask:
                decode_mask = paddle.concat([attention_mask, append_mask],
                                            axis=-1)
                tgt_pos = tgt_pos + step_idx
                att_mask = (1 - decode_mask) * -1e4
            else:
                att_mask = None
                tgt_pos = None

            layers.increment(x=step_idx, value=1.0, in_place=True)
            layers.array_write(placehold_ids, i=step_idx, array=ids)

            logits, decode_cached_kvs = self.model(pre_ids,
                                                   tgt_pos,
                                                   att_mask,
                                                   use_cache=True,
                                                   cache=cached_kvs)

            logits = paddle.reshape(logits, shape=(-1, self.vocab_size))
            probs = F.softmax(logits / self.temperature)

            if self.decoding_strategy.startswith("sampling"):
                sampling_ids = layers.sampling_id(probs, dtype="int")
            elif self.decoding_strategy.startswith("topk_sampling"):
                probs, sampling_ids = self.topk_sampling(probs)
            elif self.decoding_strategy.startswith("topp_sampling"):
                probs, sampling_ids = self.topp_sampling(probs)
            else:
                raise ValueError(self.decoding_strategy)

            selected_ids = paddle.unsqueeze(sampling_ids, -1)
            layers.array_write(selected_ids, i=step_idx, array=ids)

            length_cond = paddle.less_than(x=step_idx,
                                           y=max_len,
                                           name="length_cond")
            finish_cond = paddle.logical_not(paddle.is_empty(x=selected_ids),
                                             name="finish_cond")
            paddle.logical_and(x=length_cond,
                               y=finish_cond,
                               out=cond,
                               name="logical_and_cond")

            paddle.assign(layers.cast(cond, dtype='bool'), cond)
            if attention_mask:
                paddle.assign(decode_mask, attention_mask)
            for i in range(len(decode_cached_kvs)):
                if self._fuse:
                    paddle.assign(decode_cached_kvs[i].kv, cached_kvs[i].kv)
                else:
                    paddle.assign(decode_cached_kvs[i].k, cached_kvs[i].k)
                    paddle.assign(decode_cached_kvs[i].v, cached_kvs[i].v)

        ids, _ = layers.tensor_array_to_tensor(ids)
        return ids
コード例 #13
0
def decode_with_grammar(decoder, inits, decode_vocab, max_step_num, **kwargs):
    """A modification of paddle.fluid.layers.dynamic_decode(...).
    Dynamic decoding performs :code:`decoder.step()` repeatedly until the returned
    Tensor indicating finished status contains all True values or the number of
    decoding step reachs to :attr:`max_step_num`.
    :code:`decoder.initialize()` would be called once before the decoding loop.
    If the `decoder` has implemented `finalize` method, :code:`decoder.finalize()`
    would be called once after the decoding loop.

    Args:
        decoder(Decoder): An instance of `Decoder`.
        inits(tuple): Argument passed to `decoder.initialize`. 
        decode_vocab(DecoderDynamicVocab): namedtuple(table table_len column column_len value value_len)
        max_step_num(int): The maximum number of steps.
        **kwargs: Additional keyword arguments. Arguments passed to `decoder.step`. 

    Returns:
        tuple: A tuple( :code:`(final_outputs, final_states)` ) including the final \
            outputs and states, both are Tensor or nested structure of Tensor. \
            `final_outputs` has the same structure and data types as \
            :code:`decoder.output_dtype` , and each Tenser in `final_outputs` \
            is the stacked of all decoding steps' outputs, which might be revised \
            by :code:`decoder.finalize` . `final_states` is the counterpart \
            at last time step of initial states returned by :code:`decoder.initialize` , \
            thus has the same structure with it and has tensors with same shapes \
            and data types.
    """
    step_cnt = tensor.fill_constant(shape=[1], dtype="int64", value=1)
    max_step_num_tensor = tensor.fill_constant(shape=[1],
                                               dtype="int64",
                                               value=max_step_num - 2)

    # shape = [batch_size, beam_size, ...]
    initial_inputs, initial_states, initial_finished = decoder.initialize(
        inits, decode_vocab)
    global_inputs, global_states, global_finished = (initial_inputs,
                                                     initial_states,
                                                     initial_finished)
    inputs = initial_inputs
    states = initial_states

    # 保存输出结果
    outputs_arr_data = tensor.fill_constant_batch_size_like(
        inputs.input,
        shape=[-1, decoder.beam_size, max_step_num],
        dtype=decoder.output_dtype.predicted_ids,
        value=0)
    outputs_arr_pos = tensor.fill_constant_batch_size_like(
        inputs.input, shape=[-1, decoder.beam_size, 1], dtype='int64', value=0)
    outputs_array = data_structure.ArrayData(
        decoder.merge_batch_beams(outputs_arr_data),
        decoder.merge_batch_beams(outputs_arr_pos))

    sequence_lengths = tensor.cast(tensor.zeros_like(initial_finished),
                                   "int64")

    # 按语法解码的相关约束数据结构
    grammar_stack_dat = tensor.fill_constant_batch_size_like(
        inputs.input,
        shape=[-1, decoder.beam_size, max_step_num * STACK_EXPAND_TIMES],
        dtype='int64',
        value=0)
    grammar_stack_pos = tensor.fill_constant_batch_size_like(
        inputs.input, shape=[-1, decoder.beam_size, 1], dtype='int64', value=0)
    grammar_stack = data_structure.StackData(
        decoder.merge_batch_beams(grammar_stack_dat),
        decoder.merge_batch_beams(grammar_stack_pos))

    ############        循环解码,直到全部为 finish 状态        ############
    #   finish 的判断:通过 global_finished/next_finished && max_step_num 判断
    cond = layers.logical_not((layers.reduce_all(initial_finished)))
    while_op = layers.While(cond)
    with while_op.block():
        # step_outputs --> OutputWrapper
        # next_states  --> StateWrapper
        # next_inputs  --> DecoderInputsWrapper
        step_outputs, next_states, next_inputs = decoder.step(
            inputs, states, **kwargs)
        predicted_ids = step_outputs.predicted_ids
        _save_predict_output(outputs_array, predicted_ids,
                             next_states.finished)

        pred_gmr_type = decoder.grammar_type(predicted_ids)
        cond_type_leaf = layers.equal(pred_gmr_type, decoder.GMR_TYPE.LEAF)
        cond_type_midd = layers.equal(pred_gmr_type, decoder.GMR_TYPE.MID)

        _process_type_leaf(cond_type_leaf, decoder, grammar_stack, next_inputs,
                           next_states.finished)
        _process_type_midd(cond_type_midd, decoder, grammar_stack, next_inputs,
                           predicted_ids)

        ##next_sequence_lengths = layers.elementwise_add(sequence_lengths,
        ##                        tensor.cast(layers.logical_not(global_finished), sequence_lengths.dtype))

        _check_finished(decoder, next_inputs, next_states.finished,
                        outputs_array)

        layers.utils.map_structure(tensor.assign, next_inputs, global_inputs)
        layers.utils.map_structure(tensor.assign, next_states, global_states)
        tensor.assign(next_states.finished, global_finished)
        ##tensor.assign(next_sequence_lengths, sequence_lengths)

        # 更新循环条件
        layers.increment(x=step_cnt, value=1.0, in_place=True)
        layers.logical_and(
            layers.logical_not(layers.reduce_all(next_states.finished)),
            layers.less_equal(step_cnt, max_step_num_tensor), cond)

    final_outputs = outputs_array.data
    final_states = global_states

    final_outputs, final_states = decoder.finalize(final_outputs,
                                                   global_states,
                                                   sequence_lengths)

    return final_outputs, final_states
コード例 #14
0
    def beam_search(enc_output, enc_bias, source_length):
        """
            beam_search
        """
        max_len = layers.fill_constant(
            shape=[1], dtype='int64', value=max_out_len)
        step_idx = layers.fill_constant(
            shape=[1], dtype='int64', value=0)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)

        caches_batch_size = batch_size * beam_size
        init_score = np.zeros([1, beam_size]).astype('float32')
        init_score[:, 1:] = -INF
        initial_log_probs = layers.assign(init_score)

        alive_log_probs = layers.expand(initial_log_probs, [batch_size, 1])
        # alive seq [batch_size, beam_size, 1]
        initial_ids = layers.zeros([batch_size, 1, 1], 'float32')
        alive_seq = layers.expand(initial_ids, [1, beam_size, 1]) 
        alive_seq = layers.cast(alive_seq, 'int64')

        enc_output = layers.unsqueeze(enc_output, axes=[1])
        enc_output = layers.expand(enc_output, [1, beam_size, 1, 1])
        enc_output = layers.reshape(enc_output, [caches_batch_size, -1, d_model])

        tgt_src_attn_bias = layers.unsqueeze(enc_bias, axes=[1])
        tgt_src_attn_bias = layers.expand(tgt_src_attn_bias, [1, beam_size, n_head, 1, 1]) 
        enc_bias_shape = layers.shape(tgt_src_attn_bias)
        tgt_src_attn_bias = layers.reshape(tgt_src_attn_bias, [-1, enc_bias_shape[2], 
                enc_bias_shape[3], enc_bias_shape[4]])
            
        beam_search = BeamSearch(beam_size, batch_size, decode_alpha, trg_vocab_size, d_model)

        caches = [{
            "k": layers.fill_constant(
                shape=[caches_batch_size, 0, d_model],
                dtype=enc_output.dtype,
                value=0),
            "v": layers.fill_constant(
                shape=[caches_batch_size, 0, d_model],
                dtype=enc_output.dtype,
                value=0)
        } for i in range(n_layer)]
        
        finished_seq = layers.zeros_like(alive_seq)
        finished_scores = layers.fill_constant([batch_size, beam_size], 
                                                dtype='float32', value=-INF)
        finished_flags = layers.fill_constant([batch_size, beam_size], 
                                                dtype='float32', value=0)
        
        with while_op.block():
            pos = layers.fill_constant([caches_batch_size, 1, 1], dtype='int64', value=1)
            pos = layers.elementwise_mul(pos, step_idx, axis=0)

            alive_seq_1 = layers.reshape(alive_seq, [caches_batch_size, -1])
            alive_seq_2 = alive_seq_1[:, -1:] 
            alive_seq_2 = layers.unsqueeze(alive_seq_2, axes=[1])
 
            logits = wrap_decoder(
                trg_vocab_size, max_in_len, n_layer, n_head, d_key,
                d_value, d_model, d_inner_hid, prepostprocess_dropout,
                attention_dropout, relu_dropout, preprocess_cmd,
                postprocess_cmd, weight_sharing, embedding_sharing,
                dec_inputs=(alive_seq_2, alive_seq_2, pos, None, tgt_src_attn_bias),
                enc_output=enc_output, caches=caches, is_train=False, params_type=params_type)

            alive_seq_2, alive_log_probs_2, finished_seq_2, finished_scores_2, finished_flags_2, caches_2 = \
                    beam_search.inner_func(step_idx, logits, alive_seq_1, alive_log_probs, finished_seq, 
                                           finished_scores, finished_flags, caches, enc_output, 
                                           tgt_src_attn_bias)
            
            layers.increment(x=step_idx, value=1.0, in_place=True)
            finish_cond = beam_search.is_finished(step_idx, source_length, alive_log_probs_2, 
                                                  finished_scores_2, finished_flags_2) 

            layers.assign(alive_seq_2, alive_seq)
            layers.assign(alive_log_probs_2, alive_log_probs)
            layers.assign(finished_seq_2, finished_seq)
            layers.assign(finished_scores_2, finished_scores)
            layers.assign(finished_flags_2, finished_flags)

            for i in xrange(len(caches_2)):
                layers.assign(caches_2[i]["k"], caches[i]["k"])
                layers.assign(caches_2[i]["v"], caches[i]["v"])

            layers.logical_and(x=cond, y=finish_cond, out=cond)

        finished_flags = layers.reduce_sum(finished_flags, dim=1, keep_dim=True) / beam_size
        finished_flags = layers.cast(finished_flags, 'bool')
        mask = layers.cast(layers.reduce_any(input=finished_flags, dim=1, keep_dim=True), 'float32')
        mask = layers.expand(mask, [1, beam_size])

        mask2 = 1.0 - mask
        finished_seq = layers.cast(finished_seq, 'float32')
        alive_seq = layers.cast(alive_seq, 'float32')
        #print mask

        finished_seq = layers.elementwise_mul(finished_seq, mask, axis=0) + \
                        layers.elementwise_mul(alive_seq, mask2, axis = 0)
        finished_seq = layers.cast(finished_seq, 'int32')
        finished_scores = layers.elementwise_mul(finished_scores, mask, axis=0) + \
                            layers.elementwise_mul(alive_log_probs, mask2)
        finished_seq.persistable = True
        finished_scores.persistable = True

        return finished_seq, finished_scores
コード例 #15
0
    def decoder(self, init_state):
        """
        implement decoder in inference mode
        """
        # pd.Print(init_state)
        # define counter variable in the decoding
        array_len = pd.fill_constant(shape=[1],
                                     dtype='int64',
                                     value=self.max_length)
        counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
        static_count = pd.zeros(shape=[1], dtype='int64', force_cpu=True)

        # define tensor array to save content at each time step, and write initial id, score and state
        state_h_array = pd.create_array('float32')
        pd.array_write(self.h, array=state_h_array, i=counter)
        state_c_array = pd.create_array('float32')
        pd.array_write(self.c, array=state_c_array, i=counter)

        src_indexes = fluid.layers.data(name='source_index',
                                        shape=[1],
                                        dtype='int64',
                                        lod_level=1)
        src_index_array = pd.create_array('int64')
        pd.array_write(src_indexes, array=src_index_array, i=counter)

        ids_array = pd.create_array('int64')
        scores_array = pd.create_array('float32')

        init_ids = fluid.layers.data(name="init_ids",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=2)
        init_scores = fluid.layers.data(name="init_scores",
                                        shape=[1],
                                        dtype="float32",
                                        lod_level=2)

        pd.array_write(init_ids, array=ids_array, i=counter)
        pd.array_write(init_scores, array=scores_array, i=counter)

        encoder_vec_array = pd.create_array('float32')
        pd.array_write(self.encoder_vec,
                       array=encoder_vec_array,
                       i=static_count)
        encoder_vec_full_array = pd.create_array('float32')
        pd.array_write(self.encoder_vec_full,
                       array=encoder_vec_full_array,
                       i=static_count)
        encoder_proj_array = pd.create_array('float32')
        pd.array_write(self.encoder_proj,
                       array=encoder_proj_array,
                       i=static_count)

        event_embedding_array = pd.create_array('float32')
        pd.array_write(self.event_embedding,
                       array=event_embedding_array,
                       i=static_count)

        # define conditional variable to stop loop
        cond = pd.less_than(x=counter, y=array_len)
        # define while_op
        while_op = pd.While(cond=cond)
        with while_op.block():  # define the computing of each step
            # pd.Print(counter)

            # obtain input at present step of decoder, including id chosen at previous step, corresponding score and state at previous step.
            pre_ids = pd.array_read(array=ids_array, i=counter)
            pre_h_state = pd.array_read(array=state_h_array, i=counter)
            pre_c_state = pd.array_read(array=state_c_array, i=counter)

            # pre_score = pd.array_read(array=scores_array, i=counter)
            pre_score = pd.array_read(array=scores_array, i=static_count)

            _encoder_input_ids = pd.array_read(array=src_index_array,
                                               i=static_count)

            event_embedding = pd.array_read(array=event_embedding_array,
                                            i=static_count)

            # print("pre_h_state", pre_h_state)
            encoder_vec = pd.array_read(array=encoder_vec_array,
                                        i=static_count)
            encoder_vec_full = pd.array_read(array=encoder_vec_full_array,
                                             i=static_count)
            encoder_proj = pd.array_read(array=encoder_proj_array,
                                         i=static_count)

            # # update input state as state correspondent with id chosen at previous step
            # pre_h_state_expanded = pd.sequence_expand(pre_h_state, pre_score)
            # pre_c_state_expanded = pd.sequence_expand(pre_c_state, pre_score)
            # computing logic of decoder under the same train mode, including input vector and computing unit of decoder
            # compute predicting probability of normalized word
            pre_ids_emb = pd.embedding(
                input=pre_ids,
                size=[self.target_dict_dim, self.embedding_dim],
                dtype='float32',
                param_attr=fluid.ParamAttr(name="trg_embedding"))

            # pd.Print(pre_ids_emb)
            att_context = self.simple_attention(encoder_vec, encoder_proj,
                                                pre_h_state)
            # print("att_context", att_context)
            # print("pre_ids_emb", pre_ids_emb)
            # pd.Print(att_context)

            prob_c = fluid.layers.sequence_expand_as(pre_score, encoder_vec)
            # pd.Print(prob_c)

            current_score, current_h, current_c, this_prob_c = self.copy_decoder(
                pre_ids_emb, encoder_vec, encoder_vec_full, encoder_proj,
                _encoder_input_ids, pre_ids, prob_c, att_context, pre_h_state,
                pre_c_state, event_embedding)

            # decoder_inputs = fluid.layers.concat(
            #     input=[att_context, pre_ids_emb], axis=1)
            # current_h, current_c = self.lstm_step(
            #         decoder_inputs, pre_h_state, pre_c_state, self.decoder_size)
            # # compute predicting probability of nomarlized word
            # current_score = fluid.layers.fc(input=current_h,
            #                       size=self.target_dict_dim,
            #                       act='softmax',
            #                       param_attr=fluid.ParamAttr(name="out_softmax_w"),
            #                       bias_attr=fluid.ParamAttr(name="out_softmax_b"))

            # # current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
            # #                       size=decoder_size,
            # #                       act='tanh')
            # current_state_with_lod = pd.lod_reset(x=current_h, y=pre_score)
            # current_score = pd.fc(input=current_state_with_lod,
            #                       size=self.target_dict_dim,
            #                       act='softmax',
            #                       param_attr=fluid.ParamAttr(name="out_softmax_w"),
            #                       bias_attr=fluid.ParamAttr(name="out_softmax_b"))
            # print(current_score)
            topk_scores, topk_indices = pd.topk(current_score,
                                                k=self.beam_size)
            # pd.Print(topk_indices)
            # pd.Print(topk_scores)
            selected_ids, selected_scores = topk_indices, topk_scores

            # # compute accumulated score and perform beam search
            # accu_scores = pd.elementwise_add(
            #     x=pd.log(topk_scores), y=pd.reshape(pre_score, shape=[-1]), axis=0)
            # selected_ids, selected_scores = pd.beam_search(
            #     pre_ids,
            #     pre_score,
            #     topk_indices,
            #     accu_scores,
            #     self.beam_size,
            #     # end_id=self.end_id,
            #     end_id=999999,
            #     level=0)

            # pd.Print(selected_ids)
            # pd.Print(selected_scores)

            pd.increment(x=counter, value=1, in_place=True)
            # write search result and corresponding hidden layer into tensor array
            pd.array_write(current_h, array=state_h_array, i=counter)
            pd.array_write(current_c, array=state_c_array, i=counter)
            pd.array_write(selected_ids, array=ids_array, i=counter)
            pd.array_write(selected_scores, array=scores_array, i=counter)
            # pd.Print(selected_ids)
            # pd.Print(selected_scores)

            # update condition to stop loop
            length_cond = pd.less_than(x=counter, y=array_len)
            finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
            pd.logical_and(x=length_cond, y=finish_cond, out=cond)

        # pd.Print(array_len)
        # translation_ids, translation_scores = pd.beam_search_decode(
        #     ids=ids_array, scores=scores_array, beam_size=self.beam_size, end_id=self.end_id)
        # pd.Print(translation_ids)
        translation_ids, translation_ids_index = pd.tensor_array_to_tensor(
            ids_array, axis=1)
        translation_scores, translation_scores_index = pd.tensor_array_to_tensor(
            scores_array, axis=1)

        return translation_ids, translation_scores
コード例 #16
0
    def infilling_decode(self):
        if self.task_type == "dialog":
            emb_num = 4
        else:
            emb_num = 3
        input_shapes = [[-1, self.max_seq_len, 1]] * emb_num + \
                       [[-1, self.max_seq_len, self.max_seq_len]]
        input_dtypes = ['int64'] * emb_num + ['float32']
        input_lod_levels = [0] * emb_num + [0]

        shapes = input_shapes + [[-1, self.max_seq_len, 1],
                                 [-1, self.max_seq_len, 1], [-1, 1], [-1],
                                 [-1, 1, self.max_seq_len], [-1, 1]]
        dtypes = input_dtypes + [
            'int64', 'int64', 'float32', 'int32', 'float32', 'int64'
        ]
        lod_levels = input_lod_levels + [2, 2, 2, 0, 0, 0]

        inputs = self.to_ternsor(shapes, dtypes, lod_levels)
        pyreader = fluid.io.DataLoader.from_generator(feed_list=inputs,
                                                      capacity=50,
                                                      iterable=False)

        emb_ids = {}
        for key, value in zip(self.emb_keys, inputs[:emb_num]):
            emb_ids[key] = value

        input_mask = inputs[emb_num]
        tgt_ids, tgt_pos, init_scores, parent_idx, tgt_input_mask, data_ids = inputs[
            -6:]

        ernie = ErnieModel(emb_ids=emb_ids,
                           input_mask=input_mask,
                           config=self.ernie_config,
                           use_fp16=self.use_fp16,
                           task_type=self.task_type,
                           decoding=True,
                           gather_idx=parent_idx)

        max_len = layers.fill_constant(shape=[1],
                                       dtype=tgt_ids.dtype,
                                       value=self.max_dec_len,
                                       force_cpu=True)
        step_idx = layers.fill_constant(shape=[1],
                                        dtype=tgt_ids.dtype,
                                        value=0,
                                        force_cpu=True)
        pos_idx = layers.fill_constant(shape=[1],
                                       dtype=tgt_ids.dtype,
                                       value=1,
                                       force_cpu=True)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)

        ids = layers.array_write(layers.reshape(tgt_ids, (-1, 1)), step_idx)
        pos_biases = layers.array_write(layers.reshape(tgt_pos, (-1, 1)),
                                        step_idx)
        scores = layers.array_write(init_scores, step_idx)
        tgt_masks = layers.array_write(tgt_input_mask, step_idx)

        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            pos_bias = layers.array_read(array=pos_biases, i=step_idx)
            pos_bias = layers.gather(input=pos_bias, index=parent_idx)
            tmp_mask = layers.array_read(tgt_masks, i=step_idx)

            def gen_batch_like(value,
                               dtype="int64",
                               shape=[-1, 1, 1],
                               is_scalar=True):
                if is_scalar:
                    return layers.fill_constant_batch_size_like(
                        input=parent_idx,
                        value=value,
                        shape=shape,
                        dtype=dtype)
                else:
                    return layers.elementwise_mul(
                        x=layers.fill_constant_batch_size_like(
                            input=parent_idx,
                            value=1,
                            shape=shape,
                            dtype=dtype),
                        y=value,
                        axis=0)

            tmp_mask = layers.gather(input=tmp_mask, index=parent_idx)
            append_0_mask = gen_batch_like(0.0, dtype=tmp_mask.dtype)
            append_1_mask = gen_batch_like(1.0, dtype=tmp_mask.dtype)
            tmp_mask = layers.concat([tmp_mask, append_1_mask], axis=2)
            pre_mask = layers.concat([tmp_mask, append_0_mask], axis=2)
            cur_mask = layers.concat([tmp_mask, append_1_mask], axis=2)

            cur_ids = gen_batch_like(self.attn_id)
            pre_pos = gen_batch_like(step_idx, is_scalar=False)
            cur_pos = gen_batch_like(pos_idx, is_scalar=False)
            if self.continuous_position:
                pre_pos = pre_pos + pos_bias
                cur_pos = cur_pos + pos_bias

            dec_emb_ids = {
                "word_embedding": layers.concat([pre_ids, cur_ids], axis=1),
                "pos_embedding": layers.concat([pre_pos, cur_pos], axis=1)
            }
            if self.task_type == "dialog":
                role_ids = gen_batch_like(0)
                turn_ids = gen_batch_like(0)
                dec_emb_ids["role_embedding"] = layers.concat(
                    [role_ids, role_ids], axis=1)
                dec_emb_ids["turn_embedding"] = layers.concat(
                    [turn_ids, turn_ids], axis=1)
            else:
                sent_ids = gen_batch_like(self.tgt_type_id)
                dec_emb_ids["sent_embedding"] = layers.concat(
                    [sent_ids, sent_ids], axis=1)
            dec_mask = layers.concat([pre_mask, cur_mask], axis=1)

            dec_out = ernie.encode(dec_emb_ids,
                                   dec_mask,
                                   parent_idx,
                                   remove_query=True)
            fc_out = self.cal_logit(dec_out[:, 1:, :], None)
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(fc_out), k=self.beam_size)
            pre_lenpen = layers.pow(
                (5.0 + layers.cast(step_idx, pre_scores.dtype)) / 6.0,
                self.length_penalty)
            cur_lenpen = layers.pow(
                (5.0 + layers.cast(pos_idx, pre_scores.dtype)) / 6.0,
                self.length_penalty)
            accu_scores = layers.elementwise_add(x=layers.log(topk_scores),
                                                 y=pre_scores * pre_lenpen,
                                                 axis=0) / cur_lenpen
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            accu_scores = layers.lod_reset(accu_scores, pre_ids)
            selected_ids, selected_scores, gather_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=self.beam_size,
                end_id=self.eos_idx,
                return_parent_idx=True)

            layers.increment(x=step_idx, value=1.0, in_place=True)
            layers.increment(x=pos_idx, value=1.0, in_place=True)
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.array_write(tmp_mask, i=step_idx, array=tgt_masks)
            layers.array_write(pos_bias, i=step_idx, array=pos_biases)

            layers.assign(gather_idx, parent_idx)
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=self.beam_size, end_id=self.eos_idx)

        graph_vars = {
            "finished_ids": finished_ids,
            "finished_scores": finished_scores,
            "data_ids": data_ids
        }

        for k, v in graph_vars.items():
            v.persistable = True

        return pyreader, graph_vars
コード例 #17
0
    def _build_decoder(self,
                       enc_last_hidden,
                       enc_last_cell,
                       mode='train',
                       beam_size=10):
        softmax_weight = layers.create_parameter([self.hidden_size, self.tar_vocab_size], dtype="float32", name="softmax_weight", \
                    default_initializer=fluid.initializer.UniformInitializer(low=-self.init_scale, high=self.init_scale))
        if mode == 'train':
            dec_output, dec_last_hidden, dec_last_cell = basic_lstm( self.tar_emb, enc_last_hidden, enc_last_cell, \
                    self.hidden_size, num_layers=self.num_layers, \
                    batch_first=self.batch_first, \
                    dropout_prob=self.dropout, \
                    param_attr = ParamAttr( initializer=fluid.initializer.UniformInitializer(low=-self.init_scale, high=self.init_scale) ), \
                    bias_attr = ParamAttr( initializer = fluid.initializer.Constant(0.0) ))

            dec_output = layers.matmul(dec_output, softmax_weight)

            return dec_output
        elif mode == 'beam_search' or mode == 'greedy_search':
            dec_unit_list = []
            name = 'basic_lstm'
            for i in range(self.num_layers):
                new_name = name + "_layers_" + str(i)
                dec_unit_list.append(
                    BasicLSTMUnit(new_name, self.hidden_size, dtype='float32'))

            def decoder_step(current_in, pre_hidden_array, pre_cell_array):
                new_hidden_array = []
                new_cell_array = []

                step_in = current_in
                for i in range(self.num_layers):
                    pre_hidden = pre_hidden_array[i]
                    pre_cell = pre_cell_array[i]

                    new_hidden, new_cell = dec_unit_list[i](step_in,
                                                            pre_hidden,
                                                            pre_cell)

                    new_hidden_array.append(new_hidden)
                    new_cell_array.append(new_cell)

                    step_in = new_hidden

                return step_in, new_hidden_array, new_cell_array

            if mode == 'beam_search':
                max_src_seq_len = layers.shape(self.src)[1]
                max_length = max_src_seq_len * 2
                #max_length = layers.fill_constant( [1], dtype='int32', value = 10)
                pre_ids = layers.fill_constant([1, 1], dtype='int64', value=1)
                full_ids = layers.fill_constant([1, 1], dtype='int64', value=1)

                score = layers.fill_constant([1], dtype='float32', value=0.0)

                #eos_ids = layers.fill_constant( [1, 1], dtype='int64', value=2)

                pre_hidden_array = []
                pre_cell_array = []
                pre_feed = layers.fill_constant([beam_size, self.hidden_size],
                                                dtype='float32',
                                                value=0)
                for i in range(self.num_layers):
                    pre_hidden_array.append(
                        layers.expand(enc_last_hidden[i], [beam_size, 1]))
                    pre_cell_array.append(
                        layers.expand(enc_last_cell[i], [beam_size, 1]))

                eos_ids = layers.fill_constant([beam_size],
                                               dtype='int64',
                                               value=2)
                init_score = np.zeros((beam_size)).astype('float32')
                init_score[1:] = -INF
                pre_score = layers.assign(init_score)
                #pre_score = layers.fill_constant( [1,], dtype='float32', value= 0.0)
                tokens = layers.fill_constant([beam_size, 1],
                                              dtype='int64',
                                              value=1)

                enc_memory = layers.expand(self.enc_output, [beam_size, 1, 1])

                pre_tokens = layers.fill_constant([beam_size, 1],
                                                  dtype='int64',
                                                  value=1)

                finished_seq = layers.fill_constant([beam_size, 1],
                                                    dtype='int64',
                                                    value=0)
                finished_scores = layers.fill_constant([beam_size],
                                                       dtype='float32',
                                                       value=-INF)
                finished_flag = layers.fill_constant([beam_size],
                                                     dtype='float32',
                                                     value=0.0)

                step_idx = layers.fill_constant(shape=[1],
                                                dtype='int32',
                                                value=0)
                cond = layers.less_than(x=step_idx,
                                        y=max_length)  # default force_cpu=True

                parent_idx = layers.fill_constant([1], dtype='int32', value=0)
                while_op = layers.While(cond)

                def compute_topk_scores_and_seq(sequences,
                                                scores,
                                                scores_to_gather,
                                                flags,
                                                beam_size,
                                                select_beam=None,
                                                generate_id=None):
                    scores = layers.reshape(scores, shape=[1, -1])
                    _, topk_indexs = layers.topk(scores, k=beam_size)

                    topk_indexs = layers.reshape(topk_indexs, shape=[-1])

                    # gather result

                    top_seq = layers.gather(sequences, topk_indexs)
                    topk_flags = layers.gather(flags, topk_indexs)
                    topk_gather_scores = layers.gather(scores_to_gather,
                                                       topk_indexs)

                    if select_beam:
                        topk_beam = layers.gather(select_beam, topk_indexs)
                    else:
                        topk_beam = select_beam

                    if generate_id:
                        topk_id = layers.gather(generate_id, topk_indexs)
                    else:
                        topk_id = generate_id
                    return top_seq, topk_gather_scores, topk_flags, topk_beam, topk_id

                def grow_alive(curr_seq, curr_scores, curr_log_probs,
                               curr_finished, select_beam, generate_id):
                    curr_scores += curr_finished * -INF
                    return compute_topk_scores_and_seq(curr_seq,
                                                       curr_scores,
                                                       curr_log_probs,
                                                       curr_finished,
                                                       beam_size,
                                                       select_beam,
                                                       generate_id=generate_id)

                def grow_finished(finished_seq, finished_scores, finished_flag,
                                  curr_seq, curr_scores, curr_finished):
                    finished_seq = layers.concat([
                        finished_seq,
                        layers.fill_constant(
                            [beam_size, 1], dtype='int64', value=1)
                    ],
                                                 axis=1)
                    curr_scores += (1.0 - curr_finished) * -INF
                    #layers.Print( curr_scores, message="curr scores")
                    curr_finished_seq = layers.concat([finished_seq, curr_seq],
                                                      axis=0)
                    curr_finished_scores = layers.concat(
                        [finished_scores, curr_scores], axis=0)
                    curr_finished_flags = layers.concat(
                        [finished_flag, curr_finished], axis=0)

                    return compute_topk_scores_and_seq(curr_finished_seq,
                                                       curr_finished_scores,
                                                       curr_finished_scores,
                                                       curr_finished_flags,
                                                       beam_size)

                def is_finished(alive_log_prob, finished_scores,
                                finished_in_finished):

                    max_out_len = 200
                    max_length_penalty = layers.pow(
                        layers.fill_constant([1],
                                             dtype='float32',
                                             value=((5.0 + max_out_len) /
                                                    6.0)), alpha)

                    lower_bound_alive_score = layers.slice(
                        alive_log_prob, starts=[0], ends=[1],
                        axes=[0]) / max_length_penalty

                    lowest_score_of_fininshed_in_finished = finished_scores * finished_in_finished
                    lowest_score_of_fininshed_in_finished += (
                        1.0 - finished_in_finished) * -INF
                    lowest_score_of_fininshed_in_finished = layers.reduce_min(
                        lowest_score_of_fininshed_in_finished)

                    met = layers.less_than(
                        lower_bound_alive_score,
                        lowest_score_of_fininshed_in_finished)
                    met = layers.cast(met, 'float32')
                    bound_is_met = layers.reduce_sum(met)

                    finished_eos_num = layers.reduce_sum(finished_in_finished)

                    finish_cond = layers.less_than(
                        finished_eos_num,
                        layers.fill_constant([1],
                                             dtype='float32',
                                             value=beam_size))

                    return finish_cond

                def grow_top_k(step_idx, alive_seq, alive_log_prob,
                               parant_idx):
                    pre_ids = alive_seq

                    dec_step_emb = layers.embedding(
                        input=pre_ids,
                        size=[self.tar_vocab_size, self.hidden_size],
                        dtype='float32',
                        is_sparse=False,
                        param_attr=fluid.ParamAttr(
                            name='target_embedding',
                            initializer=fluid.initializer.UniformInitializer(
                                low=-self.init_scale, high=self.init_scale)))

                    dec_att_out, new_hidden_array, new_cell_array = decoder_step(
                        dec_step_emb, pre_hidden_array, pre_cell_array)

                    projection = layers.matmul(dec_att_out, softmax_weight)

                    logits = layers.softmax(projection)
                    current_log = layers.elementwise_add(x=layers.log(logits),
                                                         y=alive_log_prob,
                                                         axis=0)
                    base_1 = layers.cast(step_idx, 'float32') + 6.0
                    base_1 /= 6.0
                    length_penalty = layers.pow(base_1, alpha)

                    len_pen = layers.pow(
                        ((5. + layers.cast(step_idx + 1, 'float32')) / 6.),
                        alpha)

                    current_log = layers.reshape(current_log, shape=[1, -1])

                    current_log = current_log / length_penalty
                    topk_scores, topk_indices = layers.topk(input=current_log,
                                                            k=beam_size)

                    topk_scores = layers.reshape(topk_scores, shape=[-1])

                    topk_log_probs = topk_scores * length_penalty

                    generate_id = layers.reshape(
                        topk_indices, shape=[-1]) % self.tar_vocab_size

                    selected_beam = layers.reshape(
                        topk_indices, shape=[-1]) // self.tar_vocab_size

                    topk_finished = layers.equal(generate_id, eos_ids)

                    topk_finished = layers.cast(topk_finished, 'float32')

                    generate_id = layers.reshape(generate_id, shape=[-1, 1])

                    pre_tokens_list = layers.gather(tokens, selected_beam)

                    full_tokens_list = layers.concat(
                        [pre_tokens_list, generate_id], axis=1)


                    return full_tokens_list, topk_log_probs, topk_scores, topk_finished, selected_beam, generate_id, \
                            dec_att_out, new_hidden_array, new_cell_array

                with while_op.block():
                    topk_seq, topk_log_probs, topk_scores, topk_finished, topk_beam, topk_generate_id, attention_out, new_hidden_array, new_cell_array = \
                        grow_top_k(  step_idx, pre_tokens, pre_score, parent_idx)
                    alive_seq, alive_log_prob, _, alive_beam, alive_id = grow_alive(
                        topk_seq, topk_scores, topk_log_probs, topk_finished,
                        topk_beam, topk_generate_id)

                    finished_seq_2, finished_scores_2, finished_flags_2, _, _ = grow_finished(
                        finished_seq, finished_scores, finished_flag, topk_seq,
                        topk_scores, topk_finished)

                    finished_cond = is_finished(alive_log_prob,
                                                finished_scores_2,
                                                finished_flags_2)

                    layers.increment(x=step_idx, value=1.0, in_place=True)

                    layers.assign(alive_beam, parent_idx)
                    layers.assign(alive_id, pre_tokens)
                    layers.assign(alive_log_prob, pre_score)
                    layers.assign(alive_seq, tokens)
                    layers.assign(finished_seq_2, finished_seq)
                    layers.assign(finished_scores_2, finished_scores)
                    layers.assign(finished_flags_2, finished_flag)

                    # update init_hidden, init_cell, input_feed
                    new_feed = layers.gather(attention_out, parent_idx)
                    layers.assign(new_feed, pre_feed)
                    for i in range(self.num_layers):
                        new_hidden_var = layers.gather(new_hidden_array[i],
                                                       parent_idx)
                        layers.assign(new_hidden_var, pre_hidden_array[i])
                        new_cell_var = layers.gather(new_cell_array[i],
                                                     parent_idx)
                        layers.assign(new_cell_var, pre_cell_array[i])

                    length_cond = layers.less_than(x=step_idx, y=max_length)
                    layers.logical_and(x=length_cond,
                                       y=finished_cond,
                                       out=cond)

                tokens_with_eos = tokens

                all_seq = layers.concat([tokens_with_eos, finished_seq],
                                        axis=0)
                all_score = layers.concat([pre_score, finished_scores], axis=0)
                _, topk_index = layers.topk(all_score, k=beam_size)
                topk_index = layers.reshape(topk_index, shape=[-1])
                final_seq = layers.gather(all_seq, topk_index)
                final_score = layers.gather(all_score, topk_index)

                return final_seq
            elif mode == 'greedy_search':
                max_src_seq_len = layers.shape(self.src)[1]
                max_length = max_src_seq_len * 2
                #max_length = layers.fill_constant( [1], dtype='int32', value = 10)
                pre_ids = layers.fill_constant([1, 1], dtype='int64', value=1)
                full_ids = layers.fill_constant([1, 1], dtype='int64', value=1)

                score = layers.fill_constant([1], dtype='float32', value=0.0)

                eos_ids = layers.fill_constant([1, 1], dtype='int64', value=2)

                pre_hidden_array = []
                pre_cell_array = []
                pre_feed = layers.fill_constant([1, self.hidden_size],
                                                dtype='float32',
                                                value=0)
                for i in range(self.num_layers):
                    pre_hidden_array.append(enc_last_hidden[i])
                    pre_cell_array.append(enc_last_cell[i])
                    #pre_hidden_array.append( layers.fill_constant( [1, hidden_size], dtype='float32', value=0)  )
                    #pre_cell_array.append( layers.fill_constant( [1, hidden_size], dtype='float32', value=0) )

                step_idx = layers.fill_constant(shape=[1],
                                                dtype='int32',
                                                value=0)
                cond = layers.less_than(x=step_idx,
                                        y=max_length)  # default force_cpu=True
                while_op = layers.While(cond)

                with while_op.block():

                    dec_step_emb = layers.embedding(
                        input=pre_ids,
                        size=[self.tar_vocab_size, self.hidden_size],
                        dtype='float32',
                        is_sparse=False,
                        param_attr=fluid.ParamAttr(
                            name='target_embedding',
                            initializer=fluid.initializer.UniformInitializer(
                                low=-self.init_scale, high=self.init_scale)))

                    dec_att_out, new_hidden_array, new_cell_array = decoder_step(
                        dec_step_emb, pre_hidden_array, pre_cell_array)

                    projection = layers.matmul(dec_att_out, softmax_weight)

                    logits = layers.softmax(projection)
                    logits = layers.log(logits)

                    current_log = layers.elementwise_add(logits, score, axis=0)

                    topk_score, topk_indices = layers.topk(input=current_log,
                                                           k=1)

                    new_ids = layers.concat([full_ids, topk_indices])
                    layers.assign(new_ids, full_ids)
                    #layers.Print( full_ids, message="ful ids")
                    layers.assign(topk_score, score)
                    layers.assign(topk_indices, pre_ids)
                    layers.assign(dec_att_out, pre_feed)
                    for i in range(self.num_layers):
                        layers.assign(new_hidden_array[i], pre_hidden_array[i])
                        layers.assign(new_cell_array[i], pre_cell_array[i])

                    layers.increment(x=step_idx, value=1.0, in_place=True)

                    eos_met = layers.not_equal(topk_indices, eos_ids)
                    length_cond = layers.less_than(x=step_idx, y=max_length)
                    layers.logical_and(x=length_cond, y=eos_met, out=cond)

                return full_ids

            raise Exception("error")
        else:
            print("mode not supprt", mode)
コード例 #18
0
    def inference(self, model, inputs, outputs):
        """
        Run inference.

        Args:
            inputs(dict): Its key is input name(str) and its value is a Variable.
            model(object): A generate model. Need to implement `_generation_network` and `_calc_logits`.

        Returns:
            dict(str:Variable): Its key is output name(str) and its value is a Variable.
        """
        # prepare while loop
        max_len = layers.fill_constant(
            shape=[1], dtype="int64", value=self.max_dec_len, force_cpu=True)
        min_len = layers.fill_constant(
            shape=[1], dtype="int64", value=self.min_dec_len, force_cpu=True)
        step_idx = layers.fill_constant(
            shape=[1], dtype="int64", value=0, force_cpu=True)

        ids = layers.array_write(layers.reshape(inputs["tgt_ids"], (-1, 1)), step_idx)
        pos_biases = layers.array_write(layers.reshape(inputs["tgt_pos"], (-1, 1)), step_idx)
        scores = layers.array_write(inputs["init_score"], step_idx)
        tgt_generation_mask = layers.array_write(inputs["tgt_generation_mask"], step_idx)
        parent_idx = inputs["parent_idx"]

        if self.decoding_strategy == "beam_search":
            beam_size = self.beam_size
        else:
            beam_size = 1

        eos_penalty = np.zeros(self.vocab_size, dtype="float32")
        eos_penalty[self.eos_id] = -1e9
        eos_penalty = layers.assign(eos_penalty)

        token_penalty = np.zeros(self.vocab_size, dtype="float32")
        token_penalty[self.unk_id] = -1e9
        if self.mask_id >= 0:
            token_penalty[self.mask_id] = -1e9
        token_penalty = layers.assign(token_penalty)

        # start while loop
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            pos_bias = layers.array_read(array=pos_biases, i=step_idx)
            pos_bias = layers.gather(input=pos_bias, index=parent_idx)

            tmp_tgt_generation_mask = layers.array_read(tgt_generation_mask, i=step_idx)
            dtype = tmp_tgt_generation_mask.dtype

            append_mask = layers.fill_constant_batch_size_like(
                    input=pre_ids,
                    value=1.0,
                    shape=[-1, 1, 1],
                    dtype=dtype)
            tmp_tgt_generation_mask = layers.concat([tmp_tgt_generation_mask, append_mask], axis=2)
            pre_mask = tmp_tgt_generation_mask = layers.gather(input=tmp_tgt_generation_mask, index=parent_idx)

            pre_sent = layers.fill_constant_batch_size_like(
                    input=pre_mask,
                    value=1,
                    shape=[-1, 1, 1],
                    dtype=pre_ids.dtype)

            if self.continuous_position:
                pre_pos = layers.elementwise_mul(
                    x=layers.fill_constant_batch_size_like(
                        input=pre_mask,
                        value=1,
                        shape=[-1, 1, 1],
                        dtype=pre_ids.dtype), y=step_idx, axis=0) + pos_bias
            else:
                pre_pos = layers.elementwise_mul(
                    x=layers.fill_constant_batch_size_like(
                        input=pre_mask,
                        value=1,
                        shape=[-1, 1, 1],
                        dtype=pre_ids.dtype), y=step_idx, axis=0)

            if self.use_role:
                pre_role = layers.fill_constant_batch_size_like(
                        input=pre_mask,
                        value=0,
                        shape=[-1, 1, 1],
                        dtype=pre_ids.dtype)
            else:
                pre_role = None

            dec_out, _ = model._generation_network(
                token_ids=pre_ids,
                type_ids=pre_sent,
                pos_ids=pre_pos,
                role_ids=pre_role,
                generation_mask=tmp_tgt_generation_mask,
                gather_idx=parent_idx)
            logits = model._calc_logits(dec_out)

            # ignore unk and mask token
            if self.ignore_unk:
                logits = layers.elementwise_add(logits, token_penalty, axis=1)

            # min dec length
            min_len_cond = layers.less_than(x=step_idx, y=min_len)
            def min_len_penalty():
                """Plus minimum length penalty."""
                return layers.elementwise_add(logits, eos_penalty, axis=1)
            def no_penalty():
                """No penalty."""
                return logits
            logits = layers.case([(min_len_cond, min_len_penalty)], default=no_penalty)

            # get probs
            probs = layers.softmax(logits / self.temperature)

            if self.decoding_strategy == "beam_search":
                topk_scores, topk_indices = layers.topk(
                    input=probs, k=beam_size)
            else:
                if self.decoding_strategy.startswith("sampling"):
                    sampling_ids = layers.sampling_id(probs, dtype="int")
                elif self.decoding_strategy.startswith("topk_sampling"):
                    topk_probs, _ = layers.topk(input=probs, k=self.topk)
                    ge_cond = layers.cast(
                        layers.greater_equal(
                            probs,
                            layers.unsqueeze(topk_probs[:, -1], [1])),
                        "float32")
                    old_probs = probs
                    probs = probs * ge_cond / layers.reduce_sum(topk_probs, dim=-1, keep_dim=True)
                    sampling_ids = layers.sampling_id(probs, dtype="int")
                    probs = old_probs
                else:
                    raise ValueError(self.decoding_strategy)

                sampling_scores = layers.one_hot(
                    layers.unsqueeze(sampling_ids, [1]), probs.shape[1]
                )
                sampling_scores = sampling_scores * probs - (1 - sampling_scores) * 1e3
                topk_scores, topk_indices = layers.topk(
                    input=sampling_scores, k=1)

            pre_len = layers.cast(step_idx, "float32")
            layers.increment(x=step_idx, value=1.0, in_place=True)
            cur_len = layers.cast(step_idx, "float32")

            # update scores
            if self.length_average:
                accu_scores = layers.elementwise_add(
                    x=layers.log(topk_scores), y=pre_scores * pre_len, axis=0) / cur_len
            elif self.length_penalty > 0:
                pre_lp = layers.pow((5 + pre_len) / 6, self.length_penalty)
                cur_lp = layers.pow((5 + cur_len) / 6, self.length_penalty)
                accu_scores = layers.elementwise_add(
                    x=layers.log(topk_scores), y=pre_scores * pre_lp, axis=0) / cur_lp
            else:
                accu_scores = layers.elementwise_add(
                    x=layers.log(topk_scores), y=pre_scores, axis=0)
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            accu_scores = layers.lod_reset(accu_scores, pre_ids)
            selected_ids, selected_scores, gather_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=self.eos_id,
                return_parent_idx=True)

            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.array_write(pre_mask, i=step_idx, array=tgt_generation_mask)
            layers.array_write(pos_bias, i=step_idx, array=pos_biases)

            layers.assign(gather_idx, parent_idx)

            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=beam_size, end_id=self.eos_id)

        predictions = {
            "finished_ids": finished_ids,
            "finished_scores": finished_scores,
            "token_ids": inputs["token_ids"],
            "data_id": inputs["data_id"]
        }
        return predictions
コード例 #19
0
ファイル: graphsum_model.py プロジェクト: zzg-971030/Research
        def beam_search():
            """Beam search function"""

            max_len = layers.fill_constant(shape=[1],
                                           dtype=start_tokens.dtype,
                                           value=self.max_out_len,
                                           force_cpu=True)
            min_len = layers.fill_constant(shape=[1],
                                           dtype=start_tokens.dtype,
                                           value=self.min_out_len)
            neg_inf = layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=-INF)
            step_idx = layers.fill_constant(shape=[1],
                                            dtype=start_tokens.dtype,
                                            value=0,
                                            force_cpu=True)
            step_next_idx = layers.fill_constant(shape=[1],
                                                 dtype=start_tokens.dtype,
                                                 value=1,
                                                 force_cpu=True)
            cond = layers.less_than(x=step_idx,
                                    y=max_len)  # default force_cpu=True
            while_op = layers.While(cond)
            # array states will be stored for each step.
            ids = layers.array_write(layers.reshape(start_tokens, (-1, 1)),
                                     step_idx)
            scores = layers.array_write(init_scores, step_idx)
            # cell states will be overwrited at each step.
            # caches contains states of history steps in decoder self-attention
            # and static encoder output projections in encoder-decoder attention
            # to reduce redundant computation.
            caches = [
                {
                    "k":  # for self attention
                        layers.fill_constant_batch_size_like(
                            input=start_tokens,
                            shape=[-1, self._n_head, 0, self._emb_size // self._n_head],
                            dtype=enc_words_output.dtype,
                            value=0),
                    "v":  # for self attention
                        layers.fill_constant_batch_size_like(
                            input=start_tokens,
                            shape=[-1, self._n_head, 0, self._emb_size // self._n_head],
                            dtype=enc_words_output.dtype,
                            value=0),
                    "static_k_word":  # for encoder-decoder attention
                        layers.create_tensor(dtype=enc_words_output.dtype),
                    "static_v_word":  # for encoder-decoder attention
                        layers.create_tensor(dtype=enc_words_output.dtype),
                    "static_k_sent":  # for encoder-decoder attention
                        layers.create_tensor(dtype=enc_sents_output.dtype),
                    "static_v_sent":  # for encoder-decoder attention
                        layers.create_tensor(dtype=enc_sents_output.dtype)
                } for i in range(self._dec_n_layer)
            ]

            trigram_blocking = TrigramBlocking(start_tokens,
                                               self.tokenizer,
                                               use_fp16=self._use_fp16,
                                               beam_size=self.beam_size)

            with while_op.block():
                pre_ids = layers.array_read(array=ids, i=step_idx)
                pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
                # Since beam_search_op dosen't enforce pre_ids' shape, we can do
                # inplace reshape here which actually change the shape of pre_ids.
                # pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
                pre_scores = layers.array_read(array=scores, i=step_idx)
                # gather cell states corresponding to selected parent
                pre_src_words_attn_bias = layers.gather(
                    tgt_src_words_attn_bias, index=parent_idx)
                pre_src_sents_attn_bias = layers.gather(
                    tgt_src_sents_attn_bias, index=parent_idx)
                pre_graph_attn_bias = layers.gather(graph_attn_bias,
                                                    index=parent_idx)
                pre_pos = layers.elementwise_mul(
                    x=layers.fill_constant_batch_size_like(
                        input=
                        pre_src_sents_attn_bias,  # cann't use lod tensor here
                        value=1,
                        shape=[-1, 1, 1],
                        dtype=pre_ids.dtype),
                    y=step_idx,
                    axis=0)

                logits = self.decode(
                    dec_input=(pre_ids, pre_pos, None, pre_src_words_attn_bias,
                               pre_src_sents_attn_bias, pre_graph_attn_bias),
                    enc_words_output=enc_words_output,
                    enc_sents_output=enc_sents_output,
                    caches=caches,
                    gather_idx=parent_idx)

                # prevent generating end token if length less than min_out_len
                eos_index = layers.fill_constant(
                    shape=[layers.shape(logits)[0]],
                    dtype='int64',
                    value=self.eos_idx)
                eos_index = fluid.one_hot(eos_index, depth=self.voc_size)
                less_cond = layers.cast(layers.less_than(x=step_idx,
                                                         y=min_len),
                                        dtype='float32')
                less_val = layers.elementwise_mul(less_cond, neg_inf)
                eos_val = layers.elementwise_mul(eos_index, less_val, axis=0)
                revised_logits = layers.elementwise_add(logits,
                                                        eos_val,
                                                        axis=0)

                # topK reduction across beams, also contain special handle of
                # end beams and end sentences(batch reduction)
                topk_scores, topk_indices = layers.topk(
                    input=layers.softmax(revised_logits), k=self.beam_size)

                # Roll-Back previous-scores for length-penalty
                # previous-scores has been length-penaltied, before this timestep length-penalty, need roll-back
                # because of doing this, we need store the length-penaltied score in `scores`
                # while calculating use the un-penaltied score
                # -> safe for step_idx == 0 (initialization state), because previous-score == 0
                pre_timestep_length_penalty = fluid.layers.pow(
                    ((5.0 + fluid.layers.cast(step_idx, pre_scores.dtype)) /
                     6.0), self.len_penalty)
                pre_scores_wo_len_penalty = fluid.layers.elementwise_mul(
                    pre_scores, pre_timestep_length_penalty)

                # calc trigram-blocking delta scores for current alive sequence
                if self.block_trigram:
                    trigram_blocking.update_seq(pre_ids, parent_idx)
                    trigram_blocking.expand_cand_seq(topk_indices)
                    fluid.layers.py_func(
                        func=trigram_blocking.blocking_forward,
                        x=[
                            trigram_blocking.cand_seq,
                            trigram_blocking.id2is_full_token
                        ],
                        out=trigram_blocking.delta_score_out,
                        backward_func=None)
                    layers.Print(trigram_blocking.delta_score_out,
                                 summarize=100,
                                 message="trigram_blocking.delta_score_out")
                    pre_scores_wo_len_penalty = fluid.layers.elementwise_add(
                        x=trigram_blocking.delta_score_out,
                        y=pre_scores_wo_len_penalty,
                        axis=0)
                # => [N, topk]

                accu_scores = layers.elementwise_add(
                    x=layers.log(topk_scores),
                    y=pre_scores_wo_len_penalty,
                    axis=0)

                cur_timestep_length_penalty = layers.pow(
                    ((5.0 + layers.cast(step_next_idx, accu_scores.dtype)) /
                     6.0), self.len_penalty)
                curr_scores = layers.elementwise_div(
                    accu_scores, cur_timestep_length_penalty)

                # beam_search op uses lod to differentiate branches.
                curr_scores = layers.lod_reset(curr_scores, pre_ids)
                topk_indices = layers.lod_reset(topk_indices, pre_ids)
                selected_ids, selected_scores, gather_idx = layers.beam_search(
                    pre_ids=pre_ids,
                    pre_scores=pre_scores,
                    ids=topk_indices,
                    scores=curr_scores,
                    beam_size=self.beam_size,
                    end_id=self.eos_idx,
                    return_parent_idx=True)

                layers.increment(x=step_idx, value=1.0, in_place=True)
                layers.increment(x=step_next_idx, value=1.0, in_place=True)
                # cell states(caches) have been updated in wrap_decoder,
                # only need to update beam search states here.
                layers.array_write(selected_ids, i=step_idx, array=ids)
                layers.array_write(selected_scores, i=step_idx, array=scores)
                layers.assign(gather_idx, parent_idx)
                layers.assign(pre_src_words_attn_bias, tgt_src_words_attn_bias)
                layers.assign(pre_src_sents_attn_bias, tgt_src_sents_attn_bias)
                layers.assign(pre_graph_attn_bias, graph_attn_bias)

                length_cond = layers.less_than(x=step_idx, y=max_len)
                finish_cond = layers.logical_not(
                    layers.is_empty(x=selected_ids))
                layers.logical_and(x=length_cond, y=finish_cond, out=cond)

            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=self.beam_size, end_id=self.eos_idx)

            return finished_ids, finished_scores
コード例 #20
0
def decoder_decode(context, is_sparse):
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the recursive_sequence_lengths of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=is_sparse)

        # use rnn unit to update rnn
        current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
                              size=decoder_size,
                              act='tanh')
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
        # use score to do beam search
        current_score = pd.fc(input=current_state_with_lod,
                              size=target_dict_dim,
                              act='softmax')
        topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
        # calculate accumulated scores after topk to reduce computation cost
        accu_scores = pd.elementwise_add(
            x=pd.log(topk_scores), y=pd.reshape(
                pre_score, shape=[-1]), axis=0)
        selected_ids, selected_scores = pd.beam_search(
            pre_ids,
            pre_score,
            topk_indices,
            accu_scores,
            beam_size,
            end_id=10,
            level=0)

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

        # update the break condition: up to the max length or all candidates of
        # source sentences have ended.
        length_cond = pd.less_than(x=counter, y=array_len)
        finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
        pd.logical_and(x=length_cond, y=finish_cond, out=cond)

    translation_ids, translation_scores = pd.beam_search_decode(
        ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10)

    # return init_ids, init_scores

    return translation_ids, translation_scores
コード例 #21
0
    def test_hybrid_parallel_inference_helper_mp1pp2(self):

        nranks = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
        rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
        dev_id = int(os.getenv("FLAGS_selected_gpus", 0))

        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        device = "gpu"

        with paddle.static.program_guard(main_program, startup_program):
            with paddle.fluid.device_guard(f'{device}:0'):
                X = paddle.static.data(
                    name='X', shape=[None, 2], dtype='float32')

            with paddle.fluid.device_guard(f'{device}:all'):
                max_len = layers.fill_constant(
                    shape=[1],
                    dtype="int64",
                    value=2,
                    force_cpu=False,
                    name="n")
                step_idx = layers.fill_constant(
                    shape=[1],
                    dtype="int64",
                    value=0,
                    force_cpu=False,
                    name="i")

                data = layers.array_write(X, step_idx)

                cond_int = layers.fill_constant(
                    shape=[1],
                    dtype="int64",
                    value=0,
                    force_cpu=False,
                    name="cond_int")
                cond = layers.less_than(x=step_idx, y=max_len)
                while_op = layers.While(cond, is_test=True)

            with while_op.block():
                with paddle.fluid.device_guard(f'{device}:all'):
                    input = layers.array_read(array=data, i=step_idx)
                    layers.increment(x=step_idx, value=1.0, in_place=True)
                    layers.array_write(input, i=step_idx, array=data)

                with paddle.fluid.device_guard(f'{device}:0'):
                    param_attr = paddle.ParamAttr(
                        initializer=paddle.nn.initializer.Constant(1.0))
                    weight1 = paddle.static.create_parameter(
                        shape=[2, 5],
                        dtype='float32',
                        attr=param_attr,
                        is_bias=False)
                    hidden1 = paddle.matmul(input, weight1)

                with paddle.fluid.device_guard(f'{device}:1'):
                    param_attr = paddle.ParamAttr(
                        initializer=paddle.nn.initializer.Constant(2.0))
                    weight2 = paddle.static.create_parameter(
                        shape=[5, 2],
                        dtype='float32',
                        attr=param_attr,
                        is_bias=False)
                    hidden2 = paddle.matmul(hidden1, weight2)

                    layers.array_write(hidden2, i=step_idx, array=data)

                    # update cond and assign to cond_int, we will sync cond_int
                    layers.less_than(x=step_idx, y=max_len, cond=cond)
                    layers.assign(layers.cast(cond, dtype="int32"), cond_int)

                with paddle.fluid.device_guard(f'{device}:all'):
                    # the code below must at end of while block and exists in device:all
                    layers.assign(layers.cast(cond_int, dtype='bool'), cond)

            with paddle.fluid.device_guard(f'{device}:all'):
                out = layers.create_array(data.dtype)
                layers.assign(data, out)

            with paddle.fluid.device_guard(f'{device}:all'):
                # use a empty lod_tensor_array to clear lod_tensor_array
                layers.assign(layers.create_array(data.dtype), data)

        helper = HybridParallelInferenceHelper(
            startup_program,
            main_program,
            micro_batch_size=2,
            num_mp=1,
            num_pp=2,
            init_comm=nranks > 1, )
        helper.gen_infer_program(
            ['array_write_0.out'], ['cond_int.tmp_0'], debug=True)

        exe = paddle.static.Executor(paddle.CUDAPlace(dev_id))
        exe.run(startup_program)

        for step in range(2):
            init_data = np.random.uniform(
                low=0.0, high=1.0, size=[2, 2]).astype('float32')
            [res] = exe.run(main_program,
                            feed={"X": init_data},
                            fetch_list=[out])
            res_np = numpy_while(init_data)

            assert len(res) == len(res_np)
            for d1, d2 in zip(res, res_np):
                np.testing.assert_allclose(d1, d2)
コード例 #22
0
def decoder_decode(context, is_sparse):
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(name="init_scores",
                          shape=[1],
                          dtype="float32",
                          lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the lod of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(input=pre_ids,
                                   size=[dict_size, word_dim],
                                   dtype='float32',
                                   is_sparse=is_sparse)

        # use rnn unit to update rnn
        current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
                              size=decoder_size,
                              act='tanh')
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
        # use score to do beam search
        current_score = pd.fc(input=current_state_with_lod,
                              size=target_dict_dim,
                              act='softmax')
        topk_scores, topk_indices = pd.topk(current_score, k=50)
        selected_ids, selected_scores = pd.beam_search(pre_ids,
                                                       topk_indices,
                                                       topk_scores,
                                                       beam_size,
                                                       end_id=10,
                                                       level=0)

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

        pd.less_than(x=counter, y=array_len, cond=cond)

    translation_ids, translation_scores = pd.beam_search_decode(
        ids=ids_array, scores=scores_array)

    # return init_ids, init_scores

    return translation_ids, translation_scores
コード例 #23
0
ファイル: seq2seq.py プロジェクト: RonDen/Research
    def fast_decode(self):
        """create model for inference"""
        if self.task_type == "dialog":
            emb_num = 4
        else:
            emb_num = 3
        input_shapes = [[-1, self.max_seq_len, 1]] * emb_num + \
                       [[-1, self.max_seq_len, self.max_seq_len]]
        input_dtypes = ['int64'] * emb_num + ['float32']
        input_lod_levels = [0] * emb_num + [0]

        shapes = input_shapes + [[-1, 1, 1], [-1, 1, 1], [-1, 1], [-1],
                                 [-1, 1, self.max_seq_len], [-1, 1]]
        dtypes = input_dtypes + [
            'int64', 'int64', 'float32', 'int32', 'float32', 'int64'
        ]
        lod_levels = input_lod_levels + [2, 2, 2, 0, 0, 0]

        inputs = self.to_tensor(shapes, dtypes, lod_levels)
        pyreader = fluid.io.DataLoader.from_generator(feed_list=inputs,
                                                      capacity=70,
                                                      iterable=False)
        emb_ids = {}
        for key, value in zip(self.emb_keys, inputs[:emb_num]):
            emb_ids[key] = value

        input_mask = inputs[emb_num]
        tgt_ids, tgt_pos, init_scores, parent_idx, tgt_input_mask, data_ids = inputs[
            -6:]

        unimo = UNIMOModel(emb_ids=emb_ids,
                           input_mask=input_mask,
                           config=self.gene_config,
                           task_type=self.task_type,
                           decoding=True,
                           gather_idx=parent_idx)

        max_len = layers.fill_constant(shape=[1],
                                       dtype=tgt_ids.dtype,
                                       value=self.max_out_len,
                                       force_cpu=True)
        min_len = layers.fill_constant(shape=[1],
                                       dtype=tgt_ids.dtype,
                                       value=self.min_out_len,
                                       force_cpu=True)
        neg_inf = layers.fill_constant(shape=[1], dtype='float32', value=-1e18)
        step_idx = layers.fill_constant(shape=[1],
                                        dtype=tgt_ids.dtype,
                                        value=0,
                                        force_cpu=True)
        step_next_idx = layers.fill_constant(shape=[1],
                                             dtype=tgt_ids.dtype,
                                             value=1,
                                             force_cpu=True)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)

        ids = layers.array_write(layers.reshape(tgt_ids, (-1, 1)), step_idx)
        pos_biases = layers.array_write(tgt_pos, step_idx)
        scores = layers.array_write(init_scores, step_idx)
        tgt_masks = layers.array_write(tgt_input_mask, step_idx)

        trigram_blocking = TrigramBlocking(tgt_ids,
                                           self.tokenizer,
                                           beam_size=self.beam_size)

        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
            pre_scores = layers.array_read(array=scores, i=step_idx)
            pos_bias = layers.array_read(array=pos_biases, i=step_idx)
            pos_bias = layers.gather(input=pos_bias, index=parent_idx)

            def gen_batch_like(value,
                               dtype="int64",
                               shape=[-1, 1, 1],
                               is_scalar=True):
                """generate batch"""
                if is_scalar:
                    return layers.fill_constant_batch_size_like(
                        input=parent_idx,
                        value=value,
                        shape=shape,
                        dtype=dtype)
                else:
                    return layers.elementwise_mul(
                        x=layers.fill_constant_batch_size_like(
                            input=parent_idx,
                            value=1,
                            shape=shape,
                            dtype=dtype),
                        y=value,
                        axis=0)

            tmp_mask = layers.array_read(tgt_masks, i=step_idx)
            tmp_mask = layers.gather(input=tmp_mask, index=parent_idx)
            append_1_mask = gen_batch_like(1.0, dtype=tmp_mask.dtype)
            pre_mask = layers.concat([tmp_mask, append_1_mask], axis=2)

            pre_pos = gen_batch_like(step_idx, is_scalar=False)
            pre_pos = pre_pos + pos_bias  ####################### pos start from 2

            pre_sent = gen_batch_like(self.tgt_type_id, dtype=pre_ids.dtype)

            dec_emb_ids = {"word_embedding": pre_ids, "pos_embedding": pre_pos}
            if self.task_type == "dialog":
                role_ids = gen_batch_like(0)
                turn_ids = gen_batch_like(0)
                dec_emb_ids["role_embedding"] = role_ids
                dec_emb_ids["turn_embedding"] = turn_ids
            else:
                dec_emb_ids["sent_embedding"] = pre_sent

            dec_out = unimo.encode(emb_ids=dec_emb_ids,
                                   input_mask=pre_mask,
                                   gather_idx=parent_idx)
            fc_out = self.cal_logit(dec_out, None)

            # prevent generating end token if length less than min_out_len
            eos_index = layers.fill_constant(shape=[layers.shape(fc_out)[0]],
                                             dtype='int64',
                                             value=self.eos_id)
            eos_index = fluid.one_hot(eos_index, depth=self.vocab_size)
            less_cond = layers.cast(layers.less_than(x=step_idx, y=min_len),
                                    dtype='float32')
            less_val = layers.elementwise_mul(less_cond, neg_inf)
            eos_val = layers.elementwise_mul(eos_index, less_val, axis=0)
            revised_logits = layers.elementwise_add(fc_out, eos_val, axis=0)

            # topK reduction across beams, also contain special handle of
            # end beams and end sentences(batch reduction)
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(revised_logits), k=self.beam_size)

            # Roll-Back previous-scores for length-penalty
            # previous-scores has been length-penaltied, before this timestep length-penalty, need roll-back
            # because of doing this, we need store the length-penaltied score in `scores`
            # while calculating use the un-penaltied score
            # -> safe for step_idx == 0 (initialization state), because previous-score == 0
            pre_timestep_length_penalty = fluid.layers.pow(
                ((5.0 + fluid.layers.cast(step_idx, pre_scores.dtype)) / 6.0),
                self.length_penalty)
            pre_scores_wo_len_penalty = fluid.layers.elementwise_mul(
                pre_scores, pre_timestep_length_penalty)

            # calc trigram-blocking delta scores for current alive sequence
            if self.block_trigram:
                trigram_blocking.update_seq(pre_ids, parent_idx)
                trigram_blocking.expand_cand_seq(topk_indices)
                fluid.layers.py_func(func=trigram_blocking.blocking_forward,
                                     x=[
                                         trigram_blocking.cand_seq,
                                         trigram_blocking.id2is_full_token
                                     ],
                                     out=trigram_blocking.delta_score_out,
                                     backward_func=None)
                pre_scores_wo_len_penalty = fluid.layers.elementwise_add(
                    x=trigram_blocking.delta_score_out,
                    y=pre_scores_wo_len_penalty,
                    axis=0)
            # => [N, topk]
            accu_scores = layers.elementwise_add(x=layers.log(topk_scores),
                                                 y=pre_scores_wo_len_penalty,
                                                 axis=0)

            cur_timestep_length_penalty = layers.pow(
                ((5.0 + layers.cast(step_next_idx, accu_scores.dtype)) / 6.0),
                self.length_penalty)
            curr_scores = layers.elementwise_div(accu_scores,
                                                 cur_timestep_length_penalty)

            # beam_search op uses lod to differentiate branches.
            curr_scores = layers.lod_reset(curr_scores, pre_ids)
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores, gather_idx = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=curr_scores,
                beam_size=self.beam_size,
                end_id=self.eos_id,
                return_parent_idx=True)

            layers.increment(x=step_idx, value=1.0, in_place=True)
            layers.increment(x=step_next_idx, value=1.0, in_place=True)
            # cell states(caches) have been updated in wrap_decoder,
            # only need to update beam search states here.
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.array_write(pre_mask, i=step_idx, array=tgt_masks)
            layers.array_write(pos_bias, i=step_idx, array=pos_biases)
            layers.assign(gather_idx, parent_idx)

            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
            ids, scores, beam_size=self.beam_size, end_id=self.eos_id)

        graph_vars = {
            "finished_ids": finished_ids,
            "finished_scores": finished_scores,
            "data_ids": data_ids
        }

        for k, v in graph_vars.items():
            v.persistable = True

        return pyreader, graph_vars