コード例 #1
0
    def dygraph_case_dcn(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input)
        offset = paddle.to_tensor(self.offset)
        mask = paddle.to_tensor(self.mask)

        bias = None if self.no_bias else paddle.to_tensor(self.bias)

        deform_conv2d = paddle.vision.ops.DeformConv2D(
            in_channels=self.in_channels,
            out_channels=self.out_channels,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            deformable_groups=self.deformable_groups,
            groups=self.groups,
            weight_attr=I.Assign(self.weight),
            bias_attr=False if self.no_bias else I.Assign(self.bias))

        y_v1 = deform_conv2d(x, offset)
        y_v2 = deform_conv2d(x, offset, mask)

        out_v1 = y_v1.numpy()
        out_v2 = y_v2.numpy()

        return out_v1, out_v2
コード例 #2
0
    def static_graph_case_dcn(self):
        main = paddle.static.Program()
        start = paddle.static.Program()
        paddle.enable_static()
        with paddle.static.program_guard(main, start):
            x = paddle.static.data("input", (-1, self.in_channels, -1, -1),
                                   dtype=self.dtype)
            offset = paddle.static.data(
                "offset",
                (-1, self.deformable_groups * 2 * self.filter_shape[0] *
                 self.filter_shape[1], -1, -1),
                dtype=self.dtype)
            mask = paddle.static.data(
                "mask", (-1, self.deformable_groups * self.filter_shape[0] *
                         self.filter_shape[1], -1, -1),
                dtype=self.dtype)

            y_v1 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=None,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
                deformable_groups=self.deformable_groups,
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias),
                modulated=False)

            y_v2 = paddle.fluid.layers.deformable_conv(
                input=x,
                offset=offset,
                mask=mask,
                num_filters=self.out_channels,
                filter_size=self.filter_shape,
                stride=self.stride,
                padding=self.padding,
                dilation=self.dilation,
                groups=self.groups,
                deformable_groups=self.deformable_groups,
                im2col_step=1,
                param_attr=I.Assign(self.weight),
                bias_attr=False if self.no_bias else I.Assign(self.bias))

        exe = paddle.static.Executor(self.place)
        exe.run(start)
        out_v1, out_v2 = exe.run(main,
                                 feed={
                                     "input": self.input,
                                     "offset": self.offset,
                                     "mask": self.mask
                                 },
                                 fetch_list=[y_v1, y_v2])
        return out_v1, out_v2
コード例 #3
0
    def test_assign_initializer(self, dtype="float32"):
        """Test the numpy array initializer with supplied arguments
        """
        paddle.enable_static()

        import numpy
        program = framework.Program()
        block = program.global_block()
        np_array = numpy.random.random((10000)).astype(dtype)
        for _ in range(2):
            block.create_parameter(
                dtype=np_array.dtype,
                shape=np_array.shape,
                lod_level=0,
                name="param",
                initializer=initializer.Assign(np_array))
        num_ops = 2 if dtype == "float16" else 1
        self.assertEqual(len(block.ops), num_ops)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
        assert (init_op.attr('fp32_values') == np_array).all()

        paddle.disable_static()

        return block