def test_class(self): paddle.disable_static() paddle.device.set_device("npu") input_shape = (3, 4, 5) pad = [1, 2] pad_int = 1 value = 0 input_data = np.random.rand(*input_shape).astype(np.float32) pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value) pad_constant_int = nn.Pad1D(padding=pad_int, mode="constant", value=value) data = paddle.to_tensor(input_data) output = pad_constant(data) np_out = self._get_numpy_out(input_data, pad, "constant", value=value, data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out)) output = pad_constant_int(data) np_out = self._get_numpy_out(input_data, [pad_int] * 2, "constant", value=value, data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out))
def test_class(self): paddle.disable_static() for place in self.places: input_shape = (3, 4, 5) pad = [1, 2] pad_int = 1 value = 100 input_data = np.random.rand(*input_shape).astype(np.float32) pad_reflection = nn.Pad1D(padding=pad, mode="reflect") pad_replication = nn.Pad1D(padding=pad, mode="replicate") pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value) pad_constant_int = nn.Pad1D(padding=pad_int, mode="constant", value=value) pad_circular = nn.Pad1D(padding=pad, mode="circular") data = paddle.to_tensor(input_data) output = pad_reflection(data) np_out = self._get_numpy_out(input_data, pad, "reflect", data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out)) output = pad_replication(data) np_out = self._get_numpy_out(input_data, pad, "replicate", data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out)) output = pad_constant(data) np_out = self._get_numpy_out(input_data, pad, "constant", value=value, data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out)) output = pad_constant_int(data) np_out = self._get_numpy_out(input_data, [pad_int] * 2, "constant", value=value, data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out)) output = pad_circular(data) np_out = self._get_numpy_out(input_data, pad, "circular", value=value, data_format="NCL") self.assertTrue(np.allclose(output.numpy(), np_out))
def test_ncl(): input_shape = (1, 2, 3, 4) pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32')) data = np.arange(np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1 my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCL") data = paddle.to_tensor(data) result = my_pad(data)
def forward(self, bond_types_batch, type_count_batch, bond_feat): """ Input example: bond_types_batch: [0,0,2,0,1,2] + [0,0,2,0,1,2] + [2] type_count_batch: [[3, 3, 0], [1, 1, 0], [2, 2, 1]] # [num_type, batch_size] """ bond_feat = self.fc_1( paddle.reshape(bond_feat, [-1, self.num_angle * self.bond_dim])) inter_mat_list = [] for type_i in range(self.num_type): type_i_index = paddle.masked_select(paddle.arange(len(bond_feat)), bond_types_batch == type_i) if paddle.sum(type_count_batch[type_i]) == 0: inter_mat_list.append( paddle.to_tensor(np.array([0.] * len(type_count_batch[type_i])), dtype='float32')) continue bond_feat_type_i = paddle.gather(bond_feat, type_i_index) graph_bond_index = op.get_index_from_counts( type_count_batch[type_i]) # graph_bond_id = generate_segment_id_from_index(graph_bond_index) graph_bond_id = generate_segment_id(graph_bond_index) graph_feat_type_i = math.segment_pool(bond_feat_type_i, graph_bond_id, pool_type='sum') mat_flat_type_i = self.fc_2(graph_feat_type_i).squeeze(1) # print(graph_bond_id) # print(graph_bond_id.shape, graph_feat_type_i.shape, mat_flat_type_i.shape) my_pad = nn.Pad1D(padding=[ 0, len(type_count_batch[type_i]) - len(mat_flat_type_i) ], value=-1e9) mat_flat_type_i = my_pad(mat_flat_type_i) inter_mat_list.append(mat_flat_type_i) inter_mat_batch = paddle.stack(inter_mat_list, axis=1) # [batch_size, num_type] inter_mat_mask = paddle.ones_like(inter_mat_batch) * -1e9 inter_mat_batch = paddle.where( type_count_batch.transpose([1, 0]) > 0, inter_mat_batch, inter_mat_mask) inter_mat_batch = self.softmax(inter_mat_batch) return inter_mat_batch
def func_test_layer_str(self): module = nn.ELU(0.2) self.assertEqual(str(module), 'ELU(alpha=0.2)') module = nn.CELU(0.2) self.assertEqual(str(module), 'CELU(alpha=0.2)') module = nn.GELU(True) self.assertEqual(str(module), 'GELU(approximate=True)') module = nn.Hardshrink() self.assertEqual(str(module), 'Hardshrink(threshold=0.5)') module = nn.Hardswish(name="Hardswish") self.assertEqual(str(module), 'Hardswish(name=Hardswish)') module = nn.Tanh(name="Tanh") self.assertEqual(str(module), 'Tanh(name=Tanh)') module = nn.Hardtanh(name="Hardtanh") self.assertEqual(str(module), 'Hardtanh(min=-1.0, max=1.0, name=Hardtanh)') module = nn.PReLU(1, 0.25, name="PReLU", data_format="NCHW") self.assertEqual( str(module), 'PReLU(num_parameters=1, data_format=NCHW, init=0.25, dtype=float32, name=PReLU)' ) module = nn.ReLU() self.assertEqual(str(module), 'ReLU()') module = nn.ReLU6() self.assertEqual(str(module), 'ReLU6()') module = nn.SELU() self.assertEqual( str(module), 'SELU(scale=1.0507009873554805, alpha=1.6732632423543772)') module = nn.LeakyReLU() self.assertEqual(str(module), 'LeakyReLU(negative_slope=0.01)') module = nn.Sigmoid() self.assertEqual(str(module), 'Sigmoid()') module = nn.Hardsigmoid() self.assertEqual(str(module), 'Hardsigmoid()') module = nn.Softplus() self.assertEqual(str(module), 'Softplus(beta=1, threshold=20)') module = nn.Softshrink() self.assertEqual(str(module), 'Softshrink(threshold=0.5)') module = nn.Softsign() self.assertEqual(str(module), 'Softsign()') module = nn.Swish() self.assertEqual(str(module), 'Swish()') module = nn.Tanhshrink() self.assertEqual(str(module), 'Tanhshrink()') module = nn.ThresholdedReLU() self.assertEqual(str(module), 'ThresholdedReLU(threshold=1.0)') module = nn.LogSigmoid() self.assertEqual(str(module), 'LogSigmoid()') module = nn.Softmax() self.assertEqual(str(module), 'Softmax(axis=-1)') module = nn.LogSoftmax() self.assertEqual(str(module), 'LogSoftmax(axis=-1)') module = nn.Maxout(groups=2) self.assertEqual(str(module), 'Maxout(groups=2, axis=1)') module = nn.Linear(2, 4, name='linear') self.assertEqual( str(module), 'Linear(in_features=2, out_features=4, dtype=float32, name=linear)' ) module = nn.Upsample(size=[12, 12]) self.assertEqual( str(module), 'Upsample(size=[12, 12], mode=nearest, align_corners=False, align_mode=0, data_format=NCHW)' ) module = nn.UpsamplingNearest2D(size=[12, 12]) self.assertEqual( str(module), 'UpsamplingNearest2D(size=[12, 12], data_format=NCHW)') module = nn.UpsamplingBilinear2D(size=[12, 12]) self.assertEqual( str(module), 'UpsamplingBilinear2D(size=[12, 12], data_format=NCHW)') module = nn.Bilinear(in1_features=5, in2_features=4, out_features=1000) self.assertEqual( str(module), 'Bilinear(in1_features=5, in2_features=4, out_features=1000, dtype=float32)' ) module = nn.Dropout(p=0.5) self.assertEqual(str(module), 'Dropout(p=0.5, axis=None, mode=upscale_in_train)') module = nn.Dropout2D(p=0.5) self.assertEqual(str(module), 'Dropout2D(p=0.5, data_format=NCHW)') module = nn.Dropout3D(p=0.5) self.assertEqual(str(module), 'Dropout3D(p=0.5, data_format=NCDHW)') module = nn.AlphaDropout(p=0.5) self.assertEqual(str(module), 'AlphaDropout(p=0.5)') module = nn.Pad1D(padding=[1, 2], mode='constant') self.assertEqual( str(module), 'Pad1D(padding=[1, 2], mode=constant, value=0.0, data_format=NCL)') module = nn.Pad2D(padding=[1, 0, 1, 2], mode='constant') self.assertEqual( str(module), 'Pad2D(padding=[1, 0, 1, 2], mode=constant, value=0.0, data_format=NCHW)' ) module = nn.ZeroPad2D(padding=[1, 0, 1, 2]) self.assertEqual(str(module), 'ZeroPad2D(padding=[1, 0, 1, 2], data_format=NCHW)') module = nn.Pad3D(padding=[1, 0, 1, 2, 0, 0], mode='constant') self.assertEqual( str(module), 'Pad3D(padding=[1, 0, 1, 2, 0, 0], mode=constant, value=0.0, data_format=NCDHW)' ) module = nn.CosineSimilarity(axis=0) self.assertEqual(str(module), 'CosineSimilarity(axis=0, eps=1e-08)') module = nn.Embedding(10, 3, sparse=True) self.assertEqual(str(module), 'Embedding(10, 3, sparse=True)') module = nn.Conv1D(3, 2, 3) self.assertEqual(str(module), 'Conv1D(3, 2, kernel_size=[3], data_format=NCL)') module = nn.Conv1DTranspose(2, 1, 2) self.assertEqual( str(module), 'Conv1DTranspose(2, 1, kernel_size=[2], data_format=NCL)') module = nn.Conv2D(4, 6, (3, 3)) self.assertEqual(str(module), 'Conv2D(4, 6, kernel_size=[3, 3], data_format=NCHW)') module = nn.Conv2DTranspose(4, 6, (3, 3)) self.assertEqual( str(module), 'Conv2DTranspose(4, 6, kernel_size=[3, 3], data_format=NCHW)') module = nn.Conv3D(4, 6, (3, 3, 3)) self.assertEqual( str(module), 'Conv3D(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW)') module = nn.Conv3DTranspose(4, 6, (3, 3, 3)) self.assertEqual( str(module), 'Conv3DTranspose(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW)') module = nn.PairwiseDistance() self.assertEqual(str(module), 'PairwiseDistance(p=2.0)') module = nn.InstanceNorm1D(2) self.assertEqual(str(module), 'InstanceNorm1D(num_features=2, epsilon=1e-05)') module = nn.InstanceNorm2D(2) self.assertEqual(str(module), 'InstanceNorm2D(num_features=2, epsilon=1e-05)') module = nn.InstanceNorm3D(2) self.assertEqual(str(module), 'InstanceNorm3D(num_features=2, epsilon=1e-05)') module = nn.GroupNorm(num_channels=6, num_groups=6) self.assertEqual( str(module), 'GroupNorm(num_groups=6, num_channels=6, epsilon=1e-05)') module = nn.LayerNorm([2, 2, 3]) self.assertEqual( str(module), 'LayerNorm(normalized_shape=[2, 2, 3], epsilon=1e-05)') module = nn.BatchNorm1D(1) self.assertEqual( str(module), 'BatchNorm1D(num_features=1, momentum=0.9, epsilon=1e-05, data_format=NCL)' ) module = nn.BatchNorm2D(1) self.assertEqual( str(module), 'BatchNorm2D(num_features=1, momentum=0.9, epsilon=1e-05)') module = nn.BatchNorm3D(1) self.assertEqual( str(module), 'BatchNorm3D(num_features=1, momentum=0.9, epsilon=1e-05, data_format=NCDHW)' ) module = nn.SyncBatchNorm(2) self.assertEqual( str(module), 'SyncBatchNorm(num_features=2, momentum=0.9, epsilon=1e-05)') module = nn.LocalResponseNorm(size=5) self.assertEqual( str(module), 'LocalResponseNorm(size=5, alpha=0.0001, beta=0.75, k=1.0)') module = nn.AvgPool1D(kernel_size=2, stride=2, padding=0) self.assertEqual(str(module), 'AvgPool1D(kernel_size=2, stride=2, padding=0)') module = nn.AvgPool2D(kernel_size=2, stride=2, padding=0) self.assertEqual(str(module), 'AvgPool2D(kernel_size=2, stride=2, padding=0)') module = nn.AvgPool3D(kernel_size=2, stride=2, padding=0) self.assertEqual(str(module), 'AvgPool3D(kernel_size=2, stride=2, padding=0)') module = nn.MaxPool1D(kernel_size=2, stride=2, padding=0) self.assertEqual(str(module), 'MaxPool1D(kernel_size=2, stride=2, padding=0)') module = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) self.assertEqual(str(module), 'MaxPool2D(kernel_size=2, stride=2, padding=0)') module = nn.MaxPool3D(kernel_size=2, stride=2, padding=0) self.assertEqual(str(module), 'MaxPool3D(kernel_size=2, stride=2, padding=0)') module = nn.AdaptiveAvgPool1D(output_size=16) self.assertEqual(str(module), 'AdaptiveAvgPool1D(output_size=16)') module = nn.AdaptiveAvgPool2D(output_size=3) self.assertEqual(str(module), 'AdaptiveAvgPool2D(output_size=3)') module = nn.AdaptiveAvgPool3D(output_size=3) self.assertEqual(str(module), 'AdaptiveAvgPool3D(output_size=3)') module = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True) self.assertEqual( str(module), 'AdaptiveMaxPool1D(output_size=16, return_mask=True)') module = nn.AdaptiveMaxPool2D(output_size=3, return_mask=True) self.assertEqual(str(module), 'AdaptiveMaxPool2D(output_size=3, return_mask=True)') module = nn.AdaptiveMaxPool3D(output_size=3, return_mask=True) self.assertEqual(str(module), 'AdaptiveMaxPool3D(output_size=3, return_mask=True)') module = nn.SimpleRNNCell(16, 32) self.assertEqual(str(module), 'SimpleRNNCell(16, 32)') module = nn.LSTMCell(16, 32) self.assertEqual(str(module), 'LSTMCell(16, 32)') module = nn.GRUCell(16, 32) self.assertEqual(str(module), 'GRUCell(16, 32)') module = nn.PixelShuffle(3) self.assertEqual(str(module), 'PixelShuffle(upscale_factor=3)') module = nn.SimpleRNN(16, 32, 2) self.assertEqual( str(module), 'SimpleRNN(16, 32, num_layers=2\n (0): RNN(\n (cell): SimpleRNNCell(16, 32)\n )\n (1): RNN(\n (cell): SimpleRNNCell(32, 32)\n )\n)' ) module = nn.LSTM(16, 32, 2) self.assertEqual( str(module), 'LSTM(16, 32, num_layers=2\n (0): RNN(\n (cell): LSTMCell(16, 32)\n )\n (1): RNN(\n (cell): LSTMCell(32, 32)\n )\n)' ) module = nn.GRU(16, 32, 2) self.assertEqual( str(module), 'GRU(16, 32, num_layers=2\n (0): RNN(\n (cell): GRUCell(16, 32)\n )\n (1): RNN(\n (cell): GRUCell(32, 32)\n )\n)' ) module1 = nn.Sequential( ('conv1', nn.Conv2D(1, 20, 5)), ('relu1', nn.ReLU()), ('conv2', nn.Conv2D(20, 64, 5)), ('relu2', nn.ReLU())) self.assertEqual( str(module1), 'Sequential(\n '\ '(conv1): Conv2D(1, 20, kernel_size=[5, 5], data_format=NCHW)\n '\ '(relu1): ReLU()\n '\ '(conv2): Conv2D(20, 64, kernel_size=[5, 5], data_format=NCHW)\n '\ '(relu2): ReLU()\n)' ) module2 = nn.Sequential( nn.Conv3DTranspose(4, 6, (3, 3, 3)), nn.AvgPool3D(kernel_size=2, stride=2, padding=0), nn.Tanh(name="Tanh"), module1, nn.Conv3D(4, 6, (3, 3, 3)), nn.MaxPool3D(kernel_size=2, stride=2, padding=0), nn.GELU(True)) self.assertEqual( str(module2), 'Sequential(\n '\ '(0): Conv3DTranspose(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW)\n '\ '(1): AvgPool3D(kernel_size=2, stride=2, padding=0)\n '\ '(2): Tanh(name=Tanh)\n '\ '(3): Sequential(\n (conv1): Conv2D(1, 20, kernel_size=[5, 5], data_format=NCHW)\n (relu1): ReLU()\n'\ ' (conv2): Conv2D(20, 64, kernel_size=[5, 5], data_format=NCHW)\n (relu2): ReLU()\n )\n '\ '(4): Conv3D(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW)\n '\ '(5): MaxPool3D(kernel_size=2, stride=2, padding=0)\n '\ '(6): GELU(approximate=True)\n)' )