def test_math_layer(self): addto = layer.addto(input=[pixel, pixel]) linear_comb = layer.linear_comb(weights=weight, vectors=hidden, size=10) interpolation = layer.interpolation( input=[hidden, hidden], weight=score) bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4) power = layer.power(input=pixel, weight=score) scaling = layer.scaling(input=pixel, weight=score) slope = layer.slope_intercept(input=pixel) tensor = layer.tensor(a=pixel, b=pixel, size=1000) cos_sim = layer.cos_sim(a=pixel, b=pixel) trans = layer.trans(input=tensor) print layer.parse_network(addto, linear_comb, interpolation, power, scaling, slope, tensor, cos_sim, trans)
def test_math_layer(self): addto = layer.addto(input=[pixel, pixel]) linear_comb = layer.linear_comb( weights=combine_weight, vectors=hidden, size=10) interpolation = layer.interpolation( input=[hidden, hidden], weight=score) bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4) power = layer.power(input=pixel, weight=score) scaling = layer.scaling(input=pixel, weight=score) slope = layer.slope_intercept(input=pixel) tensor = layer.tensor(a=pixel, b=pixel, size=1000) cos_sim = layer.cos_sim(a=pixel, b=pixel) trans = layer.trans(input=tensor) print layer.parse_network([ addto, linear_comb, interpolation, power, scaling, slope, tensor, cos_sim, trans ])