コード例 #1
0
ファイル: base_model.py プロジェクト: GuoxiaWang/PLSC
    def _margin_softmax(input, label, out_dim, param_attr, margin1, margin2,
                        margin3, scale, sample_ratio):
        input_norm = paddle.sqrt(
            paddle.sum(paddle.square(input), axis=1, keepdim=True))
        input = paddle.divide(input, input_norm)

        if param_attr is None:
            param_attr = paddle.ParamAttr(
                initializer=paddle.nn.initializer.XavierNormal(fan_in=0.0))
        weight = paddle.static.create_parameter(
            shape=[input.shape[1], out_dim],
            dtype='float32',
            name=unique_name.generate('final_fc_w'),
            attr=param_attr)

        if sample_ratio < 1.0:
            # partial fc sample process
            label, sampled_class_index = class_center_sample(
                label, out_dim, ratio=sample_ratio, ignore_label=-1)
            sampled_class_index.stop_gradient = True
            weight = paddle.gather(weight, sampled_class_index, axis=1)
            out_dim = paddle.shape(sampled_class_index)

        weight_norm = paddle.sqrt(
            paddle.sum(paddle.square(weight), axis=0, keepdim=True))
        weight = paddle.divide(weight, weight_norm)
        cos = paddle.matmul(input, weight)

        theta = paddle.acos(cos)
        if margin1 != 1.0:
            theta = margin1 * theta
        if margin2 != 0.0:
            theta = theta + margin2
        margin_cos = paddle.cos(theta)
        if margin3 != 0.0:
            margin_cos = margin_cos - margin3

        one_hot = paddle.nn.functional.one_hot(label, num_classes=out_dim)
        diff = paddle.multiply(paddle.subtract(margin_cos, cos), one_hot)
        target_cos = paddle.add(cos, diff)
        logit = paddle.scale(target_cos, scale=scale)

        loss, prob = paddle.nn.functional.softmax_with_cross_entropy(
            logits=logit,
            label=paddle.reshape(label, (-1, 1)),
            return_softmax=True)
        avg_loss = paddle.mean(x=loss)

        one_hot.stop_gradient = True

        return avg_loss, prob
コード例 #2
0
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size, 6)
        self.assertEqual(x.numel(), 6)
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        self.assertTrue(
            np.array_equal(x.asinh().numpy(),
                           paddle.asinh(x).numpy()))
        ### acosh(x) = nan, need to change input
        t_np = np.random.uniform(1, 2, [2, 3]).astype(self.dtype)
        t = paddle.to_tensor(t_np)
        self.assertTrue(
            np.array_equal(t.acosh().numpy(),
                           paddle.acosh(t).numpy()))
        self.assertTrue(
            np.array_equal(x.atanh().numpy(),
                           paddle.atanh(x).numpy()))
        d = paddle.to_tensor([[1.2285208, 1.3491015, 1.4899898],
                              [1.30058, 1.0688717, 1.4928783],
                              [1.0958099, 1.3724753, 1.8926544]])
        d = d.matmul(d.t())
        # ROCM not support cholesky
        if not fluid.core.is_compiled_with_rocm():
            self.assertTrue(
                np.array_equal(d.cholesky().numpy(),
                               paddle.cholesky(d).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(
                m.unique(return_counts=True)[1],
                paddle.unique(m, return_counts=True)[1]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(x.divide(y).numpy(),
                           paddle.divide(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        a = paddle.to_tensor([[1, 2], [3, 4]])
        b = paddle.to_tensor([[4, 3], [2, 1]])
        self.assertTrue(
            np.array_equal(
                x.where(a, b).numpy(),
                paddle.where(x, a, b).numpy()))

        x_np = np.random.randn(3, 6, 9, 7)
        x = paddle.to_tensor(x_np)
        x_T = x.T
        self.assertTrue(x_T.shape, [7, 9, 6, 3])
        self.assertTrue(np.array_equal(x_T.numpy(), x_np.T))

        self.assertTrue(inspect.ismethod(a.dot))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.multiplex))
        self.assertTrue(inspect.ismethod(a.prod))
        self.assertTrue(inspect.ismethod(a.scale))
        self.assertTrue(inspect.ismethod(a.stanh))
        self.assertTrue(inspect.ismethod(a.add_n))
        self.assertTrue(inspect.ismethod(a.max))
        self.assertTrue(inspect.ismethod(a.maximum))
        self.assertTrue(inspect.ismethod(a.min))
        self.assertTrue(inspect.ismethod(a.minimum))
        self.assertTrue(inspect.ismethod(a.floor_divide))
        self.assertTrue(inspect.ismethod(a.remainder))
        self.assertTrue(inspect.ismethod(a.floor_mod))
        self.assertTrue(inspect.ismethod(a.multiply))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.inverse))
        self.assertTrue(inspect.ismethod(a.log1p))
        self.assertTrue(inspect.ismethod(a.erf))
        self.assertTrue(inspect.ismethod(a.addmm))
        self.assertTrue(inspect.ismethod(a.clip))
        self.assertTrue(inspect.ismethod(a.trace))
        self.assertTrue(inspect.ismethod(a.kron))
        self.assertTrue(inspect.ismethod(a.isinf))
        self.assertTrue(inspect.ismethod(a.isnan))
        self.assertTrue(inspect.ismethod(a.concat))
        self.assertTrue(inspect.ismethod(a.broadcast_to))
        self.assertTrue(inspect.ismethod(a.scatter_nd_add))
        self.assertTrue(inspect.ismethod(a.scatter_nd))
        self.assertTrue(inspect.ismethod(a.shard_index))
        self.assertTrue(inspect.ismethod(a.chunk))
        self.assertTrue(inspect.ismethod(a.stack))
        self.assertTrue(inspect.ismethod(a.strided_slice))
        self.assertTrue(inspect.ismethod(a.unsqueeze))
        self.assertTrue(inspect.ismethod(a.unstack))
        self.assertTrue(inspect.ismethod(a.argmax))
        self.assertTrue(inspect.ismethod(a.argmin))
        self.assertTrue(inspect.ismethod(a.argsort))
        self.assertTrue(inspect.ismethod(a.masked_select))
        self.assertTrue(inspect.ismethod(a.topk))
        self.assertTrue(inspect.ismethod(a.index_select))
        self.assertTrue(inspect.ismethod(a.nonzero))
        self.assertTrue(inspect.ismethod(a.sort))
        self.assertTrue(inspect.ismethod(a.index_sample))
        self.assertTrue(inspect.ismethod(a.mean))
        self.assertTrue(inspect.ismethod(a.std))
        self.assertTrue(inspect.ismethod(a.numel))
コード例 #3
0
ファイル: test_acos.py プロジェクト: heliqi/Paddle2ONNX
 def forward(self, inputs):
     """
     forward
     """
     x = paddle.acos(inputs)
     return x
コード例 #4
0
 def slerp(z1, z2, alpha):
     theta = paddle.acos(
         paddle.sum(z1 * z2) / (paddle.norm(z1) * paddle.norm(z2)))
     return (paddle.sin((1 - alpha) * theta) / paddle.sin(theta) * z1 +
             paddle.sin(alpha * theta) / paddle.sin(theta) * z2)
コード例 #5
0
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size(), [2, 3])
        self.assertTrue(
            np.array_equal(x.sigmoid().numpy(),
                           fluid.layers.sigmoid(x).numpy()))
        self.assertTrue(
            np.array_equal(x.logsigmoid().numpy(),
                           fluid.layers.logsigmoid(x).numpy()))
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh_shrink().numpy(),
                           fluid.layers.tanh_shrink(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softplus().numpy(),
                           fluid.layers.softplus(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softsign().numpy(),
                           fluid.layers.softsign(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        m = paddle.to_tensor(np.random.uniform(1, 2, [3, 3]), 'float32')
        m = m.matmul(m.t())
        self.assertTrue(
            np.array_equal(m.cholesky().numpy(),
                           paddle.cholesky(m).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(m.unique_with_counts()[2],
                           paddle.unique_with_counts(m)[2]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(x.reduce_all().numpy(),
                           paddle.reduce_all(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reduce_any().numpy(),
                           paddle.reduce_any(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
コード例 #6
0
    def margin_softmax_classify(self,
                                x,
                                label,
                                margin1=1.0,
                                margin2=0.5,
                                margin3=0.0,
                                logit_scale=64,
                                param_attr=None):
        '''
        reference: ArcFace. https://arxiv.org/abs/1801.07698
        '''
        flatten_dim = reduce(lambda a, b: a * b, x.shape[1:], 1)
        weight, bias = self.create_parameter(dtype=x.dtype,
                                             in_dim=flatten_dim,
                                             param_attr=param_attr,
                                             use_bias=False)

        # normalize x
        x_l2 = paddle.sqrt(paddle.sum(paddle.square(x), axis=1, keepdim=True))
        norm_x = paddle.divide(x, x_l2)

        norm_x_list = []
        paddle.distributed.all_gather(norm_x_list, norm_x)
        norm_x_all = paddle.concat(norm_x_list, axis=0)

        label_list = []
        paddle.distributed.all_gather(label_list, label)
        label_all = paddle.concat(label_list, axis=0)
        label_all.stop_gradient = True

        label_all = paddle.reshape(label_all, (-1, 1))
        shard_label = paddle.shard_index(label_all,
                                         index_num=self.nclasses,
                                         nshards=self.nranks,
                                         shard_id=self.rank_id,
                                         ignore_value=-1)
        shard_label = paddle.reshape(shard_label, (-1, ))
        # TODO check necessary
        shard_label.stop_gradient = True

        if self.sample_ratio < 1.0:
            # partial fc sample process
            shard_label, sampled_class_index = class_center_sample(
                shard_label,
                self.shard_dim,
                ratio=self.sample_ratio,
                ignore_label=-1)
            sampled_class_index.stop_gradient = True
            weight = paddle.gather(weight, sampled_class_index, axis=1)
            shard_dim = paddle.shape(sampled_class_index)
        else:
            shard_dim = self.shard_dim

        # normalize weight
        weight_l2 = paddle.sqrt(
            paddle.sum(paddle.square(weight), axis=0, keepdim=True))
        norm_weight = paddle.divide(weight, weight_l2)

        shard_cos = paddle.matmul(norm_x_all, norm_weight)

        theta = paddle.acos(shard_cos)
        if margin1 != 1.0:
            theta = margin1 * theta
        if margin2 != 0.0:
            theta = theta + margin2
        margin_cos = paddle.cos(theta)
        if margin3 != 0.0:
            margin_cos = margin_cos - margin3

        shard_one_hot = paddle.nn.functional.one_hot(shard_label,
                                                     num_classes=shard_dim)
        # TODO check necessary
        shard_one_hot.stop_gradient = True

        diff = paddle.multiply(paddle.subtract(margin_cos, shard_cos),
                               shard_one_hot)
        shard_target_cos = paddle.add(shard_cos, diff)
        shard_logit = paddle.scale(shard_target_cos, scale=logit_scale)

        global_loss, shard_prob = self.softmax_with_cross_entropy(
            shard_logit, shard_one_hot)
        avg_loss = paddle.mean(global_loss)

        avg_loss._set_info('shard_logit', shard_logit)
        avg_loss._set_info('shard_prob', shard_prob)
        avg_loss._set_info('shard_label', shard_label)
        avg_loss._set_info('shard_dim', shard_dim)

        return avg_loss