コード例 #1
0
    def __call__(self, pred, target):
        """
        Calculate the loss
        Args:
            pred (Tensor): heatmap prediction
            target (Tensor): target for positive samples
        Return:
            ct_focal_loss (Tensor): Focal Loss used in CornerNet & CenterNet.
                Note that the values in target are in [0, 1] since gaussian is
                used to reduce the punishment and we treat [0, 1) as neg example.
        """
        fg_map = paddle.cast(target == 1, 'float32')
        fg_map.stop_gradient = True
        bg_map = paddle.cast(target < 1, 'float32')
        bg_map.stop_gradient = True

        neg_weights = paddle.pow(1 - target, 4) * bg_map
        pos_loss = 0 - paddle.log(pred) * paddle.pow(1 - pred,
                                                     self.gamma) * fg_map
        neg_loss = 0 - paddle.log(1 - pred) * paddle.pow(
            pred, self.gamma) * neg_weights
        pos_loss = paddle.sum(pos_loss)
        neg_loss = paddle.sum(neg_loss)

        fg_num = paddle.sum(fg_map)
        ct_focal_loss = (pos_loss + neg_loss) / (
            fg_num + paddle.cast(fg_num == 0, 'float32'))
        return ct_focal_loss * self.loss_weight
コード例 #2
0
def bbox2delta_v2(src_boxes,
                  tgt_boxes,
                  means=(0.0, 0.0, 0.0, 0.0),
                  stds=(1.0, 1.0, 1.0, 1.0)):
    """Encode bboxes to deltas.
    Modified from ppdet.modeling.bbox_utils.bbox2delta.
    Args:
        src_boxes (Tensor[..., 4]): base bboxes
        tgt_boxes (Tensor[..., 4]): target bboxes
        means (list[float]): the mean that will be used to normalize delta
        stds (list[float]): the std that will be used to normalize delta
    """
    if src_boxes.size == 0:
        return paddle.empty_like(src_boxes)
    src_w = src_boxes[..., 2] - src_boxes[..., 0]
    src_h = src_boxes[..., 3] - src_boxes[..., 1]
    src_ctr_x = src_boxes[..., 0] + 0.5 * src_w
    src_ctr_y = src_boxes[..., 1] + 0.5 * src_h

    tgt_w = tgt_boxes[..., 2] - tgt_boxes[..., 0]
    tgt_h = tgt_boxes[..., 3] - tgt_boxes[..., 1]
    tgt_ctr_x = tgt_boxes[..., 0] + 0.5 * tgt_w
    tgt_ctr_y = tgt_boxes[..., 1] + 0.5 * tgt_h

    dx = (tgt_ctr_x - src_ctr_x) / src_w
    dy = (tgt_ctr_y - src_ctr_y) / src_h
    dw = paddle.log(tgt_w / src_w)
    dh = paddle.log(tgt_h / src_h)

    deltas = paddle.stack((dx, dy, dw, dh), axis=1)  # [n, 4]
    means = paddle.to_tensor(means, place=src_boxes.place)
    stds = paddle.to_tensor(stds, place=src_boxes.place)
    deltas = (deltas - means) / stds
    return deltas
コード例 #3
0
def bev_box_encode(boxes, anchors, encode_angle_to_vector=False, smooth_dim=False):
    """box encode for VoxelNet
    Args:
        boxes ([N, 7] Tensor): normal boxes: x, y, z, l, w, h, r
        anchors ([N, 7] Tensor): anchors
    """
    xa, ya, wa, la, ra = paddle.split(anchors, 5, axis=-1)
    xg, yg, wg, lg, rg = paddle.split(boxes, 5, axis=-1)
    diagonal = paddle.sqrt(la**2 + wa**2)
    xt = (xg - xa) / diagonal
    yt = (yg - ya) / diagonal
    if smooth_dim:
        lt = lg / la - 1
        wt = wg / wa - 1
    else:
        lt = paddle.log(lg / la)
        wt = paddle.log(wg / wa)
    if encode_angle_to_vector:
        rgx = paddle.cos(rg)
        rgy = paddle.sin(rg)
        rax = paddle.cos(ra)
        ray = paddle.sin(ra)
        rtx = rgx - rax
        rty = rgy - ray
        return paddle.concat([xt, yt, wt, lt, rtx, rty], axis=-1)
    else:
        rt = rg - ra
        return paddle.concat([xt, yt, wt, lt, rt], axis=-1)
コード例 #4
0
ファイル: net.py プロジェクト: duyiqi17/PaddleRec
    def hierarchical_self_supervision(self, em, adj):
        def row_shuffle(embedding):
            return embedding[paddle.randperm(paddle.shape(embedding)[0])]

        def row_column_shuffle(embedding):
            embedding = paddle.transpose(embedding, perm=[1, 0])
            corrupted_embedding = paddle.transpose(embedding[paddle.randperm(
                paddle.shape(embedding)[0])],
                                                   perm=[1, 0])
            return corrupted_embedding[paddle.randperm(
                paddle.shape(corrupted_embedding)[0])]

        def score(x1, x2):
            return paddle.sum(paddle.multiply(x1, x2), axis=1)

        user_embeddings = em
        edge_embeddings = paddle.matmul(adj, user_embeddings)

        # Local MIN
        pos = score(user_embeddings, edge_embeddings)
        neg1 = score(row_shuffle(user_embeddings), edge_embeddings)
        neg2 = score(row_column_shuffle(edge_embeddings), user_embeddings)
        local_loss = paddle.sum(-paddle.log(F.sigmoid(pos - neg1)) -
                                paddle.log(F.sigmoid(neg1 - neg2)))

        # Global MIN
        graph = paddle.mean(edge_embeddings, axis=0)
        pos = score(edge_embeddings, graph)
        neg1 = score(row_column_shuffle(edge_embeddings), graph)
        global_loss = paddle.sum(-paddle.log(F.sigmoid(pos - neg1)))

        return global_loss + local_loss
コード例 #5
0
ファイル: focal_loss.py プロジェクト: cuicheng01/models
    def forward(self, prediction, target):
        """forward

        Args:
            prediction (paddle.Tensor): model prediction
            target (paddle.Tensor): ground truth

        Returns:
            paddle.Tensor: focal loss
        """
        positive_index = (target == 1).astype("float32")
        negative_index = (target < 1).astype("float32")

        negative_weights = paddle.pow(1 - target, self.beta)
        loss = 0.

        positive_loss = paddle.log(prediction) \
                        * paddle.pow(1 - prediction, self.alpha) * positive_index
        negative_loss = paddle.log(1 - prediction) \
                        * paddle.pow(prediction, self.alpha) * negative_weights * negative_index

        num_positive = positive_index.sum()
        positive_loss = positive_loss.sum()
        negative_loss = negative_loss.sum()

        if num_positive == 0:
            loss -= negative_loss
        else:
            loss -= (positive_loss + negative_loss) / num_positive

        return loss
コード例 #6
0
ファイル: losses.py プロジェクト: LiJinrun/softwarecup2020
def _neg_loss(pred, gt):
    ''' Modified focal loss. Exactly the same as CornerNet.
      Runs faster and costs a little bit more memory
    Arguments:
      pred (batch x c x h x w)
      gt_regr (batch x c x h x w)
  '''
    # pos_inds = gt.eq(1).float()
    # neg_inds = gt.lt(1).float()
    pos_inds = gt.equal(paddle.ones(gt.shape, dtype=gt.dtype)).cast('float32')
    neg_inds = gt.less_than(paddle.ones(gt.shape,
                                        dtype=gt.dtype)).cast('float32')
    # neg_weights = torch.pow(1 - gt, 4)
    neg_weights = paddle.pow(1 - gt, 4)

    loss = 0

    # pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
    # neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds
    pos_loss = paddle.log(pred) * paddle.pow(1 - pred, 2) * pos_inds
    neg_loss = paddle.log(1 - pred) * paddle.pow(pred,
                                                 2) * neg_weights * neg_inds

    # num_pos  = pos_inds.float().sum()
    num_pos = pos_inds.cast('float32').sum()
    pos_loss = pos_loss.sum()
    neg_loss = neg_loss.sum()

    if num_pos == 0:
        loss = loss - neg_loss
    else:
        loss = loss - (pos_loss + neg_loss) / num_pos
    return loss
コード例 #7
0
ファイル: align_dec_func.py プロジェクト: RonDen/Research
def compute_align_loss(model, desc_enc, example):
    """model: a nl2code decoder"""
    # find relevant columns
    root_node = example.tree
    rel_cols = list(
        reversed([
            val for val in model.ast_wrapper.find_all_descendants_of_type(
                root_node, 'column')
        ]))
    rel_tabs = list(
        reversed([
            val for val in model.ast_wrapper.find_all_descendants_of_type(
                root_node, 'table')
        ]))
    rel_vals = np.abs(
        list(
            reversed([
                val for val in model.ast_wrapper.find_all_descendants_of_type(
                    root_node, 'value')
            ])))

    rel_cols_t = paddle.to_tensor(sorted(list(set(rel_cols))), dtype='int64')
    rel_tabs_t = paddle.to_tensor(sorted(list(set(rel_tabs))), dtype='int64')
    rel_vals_t = paddle.to_tensor(sorted(list(set(rel_vals))), dtype='int64')

    mc_att_on_rel_col = desc_enc.m2c_align_mat.index_select(rel_cols_t, axis=1)
    mc_max_rel_att = mc_att_on_rel_col.max(axis=0)
    mc_max_rel_att = mc_max_rel_att.clip(min=1e-9)

    mt_att_on_rel_tab = desc_enc.m2t_align_mat.index_select(rel_tabs_t, axis=1)
    mt_max_rel_att = mt_att_on_rel_tab.max(axis=0)
    mt_max_rel_att = mt_max_rel_att.clip(min=1e-9)

    mv_att_on_rel_val = desc_enc.m2v_align_mat.index_select(rel_vals_t, axis=1)
    mv_max_rel_att = mv_att_on_rel_val.max(axis=0)
    mv_max_rel_att = mv_max_rel_att.clip(min=1e-9)

    #c_num = desc_enc.m2c_align_mat.shape[1]
    #un_rel_cols_t = paddle.to_tensor(sorted(list(set(range(c_num)) - set(rel_cols))), dtype='int64')
    #mc_att_on_unrel_col = desc_enc.m2c_align_mat.index_select(un_rel_cols_t, axis=1)
    #mc_max_unrel_att = mc_att_on_unrel_col.max(axis=0)
    #mc_max_unrel_att = mc_max_unrel_att.clip(min=1e-9)
    #mc_margin = paddle.log(mc_max_unrel_att).mean() - paddle.log(mc_max_rel_att).mean()

    #t_num = desc_enc.m2t_align_mat.shape[1]
    #if t_num > len(set(rel_tabs)):
    #    un_rel_tabs_t = paddle.to_tensor(sorted(list(set(range(t_num)) - set(rel_tabs))), dtype='int64')
    #    mt_att_on_unrel_tab = desc_enc.m2t_align_mat.index_select(un_rel_tabs_t, axis=1)
    #    mt_max_unrel_att = mt_att_on_unrel_tab.max(axis=0)
    #    mt_max_unrel_att = mt_max_unrel_att.clip(min=1e-9)
    #    mt_margin = paddle.log(mt_max_unrel_att).mean() - paddle.log(mt_max_rel_att).mean()
    #else:
    #    mt_margin = paddle.to_tensor([0.0])

    value_loss_weight = 2.0
    align_loss = - paddle.log(mc_max_rel_att).mean() \
                 - paddle.log(mt_max_rel_att).mean() \
                 - value_loss_weight * paddle.log(mv_max_rel_att).mean()
    return align_loss
コード例 #8
0
 def _probs_to_logits(self, probs, is_binary=False):
     r"""
     Converts probabilities into logits. For the binary, probs denotes the 
     probability of occurrence of the event indexed by `1`. For the 
     multi-dimensional, values of last axis denote the probabilities of 
     occurrence of each of the events.
     """
     return (paddle.log(probs) - paddle.log1p(-probs)) \
         if is_binary else paddle.log(probs)
コード例 #9
0
ファイル: loss_opr.py プロジェクト: lu1kaifeng/CrowdDet
def focal_loss(inputs, targets, alpha=-1, gamma=2):
    class_range = torch.arange(1, inputs.shape[1] + 1)
    pos_pred = (1 - inputs) ** gamma * torch.log(inputs)
    neg_pred = inputs ** gamma * torch.log(1 - inputs)

    pos_loss = (targets == class_range) * pos_pred * alpha
    neg_loss = (targets != class_range) * neg_pred * (1 - alpha)
    loss = -(pos_loss + neg_loss)
    return loss.sum(axis=1)
コード例 #10
0
    def forward(self, out1, out2):
        if self.act is not None:
            out1 = self.act(out1)
            out2 = self.act(out2)

        log_out1 = paddle.log(out1)
        log_out2 = paddle.log(out2)
        loss = (F.kl_div(log_out1, out2, reduction='batchmean') +
                F.kl_div(log_out2, out1, reduction='batchmean')) / 2.0
        return {"DMLLoss": loss}
コード例 #11
0
ファイル: categorical.py プロジェクト: sandyhouse/Paddle
    def kl_divergence(self, other):
        """The KL-divergence between two Categorical distributions.

        Args:
            other (Categorical): instance of Categorical. The data type is float32.

        Returns:
            Tensor: kl-divergence between two Categorical distributions.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                paddle.seed(200) # on CPU device
                y = paddle.rand([6])
                print(y)
                # [0.77663314 0.90824795 0.15685187
                #  0.04279523 0.34468332 0.7955718 ]

                cat = Categorical(x)
                cat2 = Categorical(y)

                cat.kl_divergence(cat2)
                # [0.071952]

        """
        name = self.name + '_kl_divergence'
        if not _non_static_mode():
            check_type(other, 'other', Categorical, 'kl_divergence')

        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
        other_logits = other.logits - paddle.max(
            other.logits, axis=-1, keepdim=True)
        e_logits = ops.exp(logits)
        other_e_logits = ops.exp(other_logits)
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
        other_z = paddle.sum(other_e_logits, axis=-1, keepdim=True)
        prob = e_logits / z
        kl = paddle.sum(
            prob *
            (logits - paddle.log(z) - other_logits + paddle.log(other_z)),
            axis=-1,
            keepdim=True,
            name=name)

        return kl
コード例 #12
0
    def _gumbel_softmax_sample(self, logit, tau=1, eps=1e-10):
        """
        Draw a sample from the Gumbel-Softmax distribution

        based on
        https://github.com/ericjang/gumbel-softmax/blob/3c8584924603869e90ca74ac20a6a03d99a91ef9/Categorical%20VAE.ipynb
        (MIT license)
        """
        gumbel_noise = paddle.rand(logit.shape)
        gumbel_noise = -paddle.log(eps - paddle.log(gumbel_noise + eps))
        logit = logit + gumbel_noise
        return F.softmax(logit / tau, axis=1)
コード例 #13
0
ファイル: basic_loss.py プロジェクト: chenhaohan88/PaddleOCR
 def forward(self, out1, out2):
     if self.act is not None:
         out1 = self.act(out1)
         out2 = self.act(out2)
     if len(out1.shape) < 2:
         log_out1 = paddle.log(out1)
         log_out2 = paddle.log(out2)
         loss = (F.kl_div(log_out1, out2, reduction='batchmean') +
                 F.kl_div(log_out2, out1, reduction='batchmean')) / 2.0
     else:
         loss = self.jskl_loss(out1, out2)
     return loss
コード例 #14
0
 def get_l1_target(self,
                   l1_target,
                   gt,
                   stride,
                   x_shifts,
                   y_shifts,
                   eps=1e-8):
     l1_target[:, 0] = gt[:, 0] / stride - x_shifts
     l1_target[:, 1] = gt[:, 1] / stride - y_shifts
     l1_target[:, 2] = paddle.log(gt[:, 2] / stride + eps)
     l1_target[:, 3] = paddle.log(gt[:, 3] / stride + eps)
     l1_target.stop_gradient = True
     return l1_target
コード例 #15
0
ファイル: modeling.py プロジェクト: wbj0110/models
 def sample_from_softmax(self, logits, use_softmax_sample=True):
     if use_softmax_sample:
         #uniform_noise = paddle.uniform(logits.shape, dtype="float32", min=0, max=1)
         uniform_noise = paddle.rand(logits.shape, dtype="float32")
         gumbel_noise = -paddle.log(-paddle.log(uniform_noise + 1e-9) +
                                    1e-9)
     else:
         gumbel_noise = paddle.zeros_like(logits)
     # softmax_sample equal to sampled_tokids.unsqueeze(-1)
     softmax_sample = paddle.argmax(F.softmax(logits + gumbel_noise),
                                    axis=-1)
     # one hot
     return F.one_hot(softmax_sample, logits.shape[-1])
コード例 #16
0
 def forward(self, out1, out2):
     if self.act is not None:
         out1 = self.act(out1)
         out2 = self.act(out2)
     if self.use_log:
         # for recognition distillation, log is needed for feature map
         log_out1 = paddle.log(out1)
         log_out2 = paddle.log(out2)
         loss = (self._kldiv(log_out1, out2) +
                 self._kldiv(log_out2, out1)) / 2.0
     else:
         # for detection distillation log is not needed
         loss = self.jskl_loss(out1, out2)
     return loss
コード例 #17
0
    def __init__(self, range_max, n_sample):
        with paddle.no_grad():
            self.range_max = range_max
            log_indices = paddle.log(
                paddle.arange(1., range_max + 2., 1., dtype=global_dtype))
            self.dist = (log_indices[1:] - log_indices[:-1]) / log_indices[-1]

            self.log_q = paddle.cast(paddle.log(
                paddle.exp(-(
                    paddle.log1p(-paddle.cast(self.dist, dtype=global_dtype)) *
                    2 * n_sample)) - 1),
                                     dtype=global_dtype)

        self.n_sample = n_sample
コード例 #18
0
    def softmax_with_cross_entropy(self, shard_logit, shard_one_hot):
        shard_max = paddle.max(shard_logit, axis=1, keepdim=True)
        global_max = shard_max
        paddle.distributed.all_reduce(global_max,
                                      op=paddle.distributed.ReduceOp.MAX)
        shard_logit_new = paddle.subtract(shard_logit, global_max)

        shard_exp = paddle.exp(shard_logit_new)
        shard_demon = paddle.sum(shard_exp, axis=1, keepdim=True)
        global_demon = shard_demon
        paddle.distributed.all_reduce(global_demon,
                                      op=paddle.distributed.ReduceOp.SUM)

        global_log_demon = paddle.log(global_demon)
        shard_log_prob = shard_logit_new - global_log_demon
        shard_prob = paddle.exp(shard_log_prob)

        target_log_prob = paddle.min(shard_log_prob * shard_one_hot,
                                     axis=1,
                                     keepdim=True)
        shard_loss = paddle.scale(target_log_prob, scale=-1.0)
        #TODO paddle.distributed.reducescatter not found
        global_loss = paddle.fluid.layers.collective._c_reducescatter(
            shard_loss, nranks=self.nranks, use_calc_stream=True)
        return global_loss, shard_prob
コード例 #19
0
ファイル: categorical.py プロジェクト: sandyhouse/Paddle
    def log_prob(self, value):
        """Log probabilities of the given category. Refer to ``probs`` method.

        Args:
            value (Tensor): The input tensor represents the selected category index.

        Returns:
            Tensor: Log probability.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                value = paddle.to_tensor([2,1,3])
                cat.log_prob(value)
                # [-5.10271 -2.22287 -1.31061]

        """
        name = self.name + '_log_prob'

        return paddle.log(self.probs(value), name=name)
コード例 #20
0
ファイル: categorical.py プロジェクト: sandyhouse/Paddle
    def entropy(self):
        """Shannon entropy in nats.

        Returns:
            Tensor: Shannon entropy of Categorical distribution. The data type is float32.

        Examples:
            .. code-block:: python

                import paddle
                from paddle.distribution import Categorical

                paddle.seed(100) # on CPU device
                x = paddle.rand([6])
                print(x)
                # [0.5535528  0.20714243 0.01162981
                #  0.51577556 0.36369765 0.2609165 ]

                cat = Categorical(x)

                cat.entropy()
                # [1.77528]

        """
        name = self.name + '_entropy'
        logits = self.logits - \
            paddle.max(self.logits, axis=-1, keepdim=True)
        e_logits = ops.exp(logits)
        z = paddle.sum(e_logits, axis=-1, keepdim=True)
        prob = e_logits / z

        neg_entropy = paddle.sum(prob * (logits - paddle.log(z)), axis=-1)
        entropy = paddle.scale(neg_entropy, scale=-1.0, name=name)
        return entropy
コード例 #21
0
    def forward(self):
        fpn_rois = self.input('FpnRois', 0)
        areas = self.bbox_area(fpn_rois)
        scale = paddle.sqrt(areas)
        num_level = self.max_level - self.min_level + 1
        target_level = paddle.log(scale / self.refer_scale + 1e-06) / np.log(2)
        target_level = paddle.floor(self.refer_level + target_level)
        target_level = paddle.clip(target_level,
                                   min=self.min_level,
                                   max=self.max_level)

        rois = list()
        rois_idx_order = list()

        for level in range(self.min_level, self.max_level + 1):
            level_tensor = paddle.full_like(target_level, fill_value=level)
            res = paddle.equal(target_level, level_tensor)
            res = paddle.squeeze(res, axis=1)
            res = paddle.cast(res, dtype='int32')
            index = paddle.nonzero(res)
            roi = paddle.gather(fpn_rois, index, axis=0)
            rois.append(roi)
            rois_idx_order.append(index)
        rois_idx_order = paddle.concat(rois_idx_order, axis=0)
        size = paddle.shape(rois_idx_order)[0]
        _, rois_idx_restore = paddle.topk(rois_idx_order,
                                          axis=0,
                                          sorted=True,
                                          largest=False,
                                          k=size)
        #rois_idx_restore = paddle.cast(rois_idx_restore, dtype='int32')
        return {'MultiFpnRois': rois, 'RestoreIndex': [rois_idx_restore]}
コード例 #22
0
ファイル: firstorder_gen.py プロジェクト: leeacord/PaddleGAN
    def warp_coordinates(self, coordinates):
        theta = self.theta.astype('float32')
        theta = theta.unsqueeze(1)
        coordinates = coordinates.unsqueeze(-1)

        # If x1:(1, 5, 2, 2), x2:(10, 100, 2, 1)
        # torch.matmul can broadcast x1, x2 to (10, 100, ...)
        # In PDPD, it should be done manually
        theta_part_a = theta[:, :, :, :2]
        theta_part_b = theta[:, :, :, 2:]

        # TODO: paddle.matmul have no double_grad_op, use 'paddle.fluid.layers.matmul'
        transformed = paddle.fluid.layers.matmul(
            *broadcast(theta_part_a, coordinates)) + theta_part_b
        transformed = transformed.squeeze(-1)
        if self.tps:
            control_points = self.control_points.astype('float32')
            control_params = self.control_params.astype('float32')
            distances = coordinates.reshape(
                (coordinates.shape[0], -1, 1, 2)) - control_points.reshape(
                    (1, 1, -1, 2))
            distances = distances.abs().sum(-1)

            result = distances * distances
            result = result * paddle.log(distances + 1e-6)
            result = result * control_params
            result = result.sum(2).reshape((self.bs, coordinates.shape[1], 1))
            transformed = transformed + result
        return transformed
コード例 #23
0
    def forward(self, data, target, *mems):
        if not mems:
            batch_size = data.shape[0]
            mems = self.init_mems(batch_size, self.d_model)

        hidden, new_mems = self._forward(data, mems=mems)

        # TODO(FrostML): use getitem.
        tgt_len = target.shape[1]
        pred_hid = paddle.slice(hidden, [1], [-tgt_len], [hidden.shape[1]])
        if self.sample_softmax > 0 and self.training:
            assert self.tie_weight, "tie_weight must be True if sample_softmax > 0"
            logit = sample_logits(self.word_emb, self.out_layer.bias, target,
                                  pred_hid, self.sampler)
            loss = -paddle.log(F.softmax(logit, axis=-1))[:, :, 0]
        else:
            loss = self.crit(
                paddle.reshape(
                    pred_hid, shape=[-1, pred_hid.shape[-1]]),
                paddle.reshape(
                    target, shape=[-1]))

        if new_mems is None:
            return [loss.mean()]
        else:
            return [loss.mean()] + new_mems
コード例 #24
0
 def logstd(self):
     """The log standard deviation of the Normal distribution."""
     try:
         return self._logstd
     except:
         self._logstd = paddle.log(self._std)
         return self._logstd
コード例 #25
0
ファイル: tps.py プロジェクト: zhypopt/PaddleOCR
 def build_inv_delta_C_paddle(self, C):
     """ Return inv_delta_C which is needed to calculate T """
     F = self.F
     hat_C = paddle.zeros((F, F), dtype='float32')  # F x F
     for i in range(0, F):
         for j in range(i, F):
             if i == j:
                 hat_C[i, j] = 1
             else:
                 r = paddle.norm(C[i] - C[j])
                 hat_C[i, j] = r
                 hat_C[j, i] = r
     hat_C = (hat_C**2) * paddle.log(hat_C)
     delta_C = paddle.concat(  # F+3 x F+3
         [
             paddle.concat([paddle.ones(
                 (F, 1)), C, hat_C], axis=1),  # F x F+3
             paddle.concat(
                 [paddle.zeros((2, 3)),
                  paddle.transpose(C, perm=[1, 0])],
                 axis=1),  # 2 x F+3
             paddle.concat([paddle.zeros(
                 (1, 3)), paddle.ones((1, F))],
                           axis=1)  # 1 x F+3
         ],
         axis=0)
     inv_delta_C = paddle.inverse(delta_C)
     return inv_delta_C  # F+3 x F+3
コード例 #26
0
ファイル: rpn.py プロジェクト: AgentMaker/PAPC
 def forward(self, x, bev=None):
     x = self.block1(x)
     up1 = self.deconv1(x)
     if self._use_bev:
         bev[:, -1] = paddle.clip(paddle.log(1 + bev[:, -1]) / np.log(16.0),
                                  max=1.0)
         x = paddle.concat([x, self.bev_extractor(bev)], axis=1)
     x = self.block2(x)
     up2 = self.deconv2(x)
     x = self.block3(x)
     up3 = self.deconv3(x)
     x = paddle.concat([up1, up2, up3], axis=1)
     box_preds = self.conv_box(x)
     cls_preds = self.conv_cls(x)
     # [N, C, y(H), x(W)]
     box_preds = box_preds.transpose((0, 2, 3, 1))
     cls_preds = cls_preds.transpose((0, 2, 3, 1))
     ret_dict = {
         "box_preds": box_preds,
         "cls_preds": cls_preds,
     }
     if self._use_direction_classifier:
         dir_cls_preds = self.conv_dir_cls(x)
         dir_cls_preds = dir_cls_preds.transpose((0, 2, 3, 1))
         ret_dict["dir_cls_preds"] = dir_cls_preds
     return ret_dict
コード例 #27
0
ファイル: modeling.py プロジェクト: joey12300/PaddleNLP
def relative_position_bucket(relative_position,
                             bidirectional=True,
                             num_buckets=32,
                             max_distance=128):
    ret = 0
    if bidirectional:
        num_buckets //= 2
        ret += (relative_position > 0).astype(paddle.int64) * num_buckets
        n = paddle.abs(relative_position)
    else:
        n = paddle.max(-relative_position, paddle.zeros_like(relative_position))
    # now n is in the range [0, inf)
    # half of the buckets are for exact increments in positions
    max_exact = num_buckets // 2
    is_small = n < max_exact

    # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
    val_if_large = max_exact + (paddle.log(
        n.astype(paddle.float32) / max_exact) / math.log(max_distance /
                                                         max_exact) *
                                (num_buckets - max_exact)).astype(paddle.int64)

    val_if_large = paddle.minimum(
        val_if_large, paddle.full_like(val_if_large, num_buckets - 1))

    ret += paddle.where(is_small, n, val_if_large)
    return ret
コード例 #28
0
    def __call__(self, preds, targets):
        heatmaps_gt, mask = targets
        heatmaps_pred = preds[0]
        scalemaps_pred = preds[1]

        heatmaps_scaled_gt = paddle.where(
            heatmaps_gt > 0, 0.5 * heatmaps_gt *
            (1 + (1 +
                  (scalemaps_pred - 1.) * paddle.log(heatmaps_gt + 1e-10))**2),
            heatmaps_gt)

        regularizer_loss = paddle.mean(
            paddle.pow((scalemaps_pred - 1.) * (heatmaps_gt > 0).astype(float),
                       2))
        omiga = 0.01
        # thres = 2**(-1/omiga), threshold for positive weight
        hm_weight = heatmaps_scaled_gt**(omiga) * paddle.abs(
            1 - heatmaps_pred) + paddle.abs(heatmaps_pred) * (
                1 - heatmaps_scaled_gt**(omiga))

        loss = (((heatmaps_pred - heatmaps_scaled_gt)**2) *
                mask.cast('float').unsqueeze(1)) * hm_weight
        loss = loss.mean()
        loss = self.loss_factor * (loss + 1.0 * regularizer_loss)
        return loss
コード例 #29
0
ファイル: tps.py プロジェクト: queenmary55/PaddleOCR
 def build_inv_delta_C_paddle(self, C):
     """ Return inv_delta_C which is needed to calculate T """
     F = self.F
     hat_eye = paddle.eye(F, dtype='float64')  # F x F
     hat_C = paddle.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]),
                         axis=2) + hat_eye
     hat_C = (hat_C**2) * paddle.log(hat_C)
     delta_C = paddle.concat(  # F+3 x F+3
         [
             paddle.concat([paddle.ones((F, 1), dtype='float64'), C, hat_C],
                           axis=1),  # F x F+3
             paddle.concat([
                 paddle.zeros((2, 3), dtype='float64'),
                 paddle.transpose(C, perm=[1, 0])
             ],
                           axis=1),  # 2 x F+3
             paddle.concat([
                 paddle.zeros((1, 3), dtype='float64'),
                 paddle.ones((1, F), dtype='float64')
             ],
                           axis=1)  # 1 x F+3
         ],
         axis=0)
     inv_delta_C = paddle.inverse(delta_C)
     return inv_delta_C  # F+3 x F+3
コード例 #30
0
    def forward(self, true_binary, rule_masks, raw_logits):
        """
        tbd
        """
        if cmd_args.loss_type == 'binary':
            exp_pred = paddle.exp(raw_logits) * rule_masks

            norm = paddle.sum(exp_pred, axis=2, keepdim=True)
            prob = paddle.divide(exp_pred, norm)

            return F.binary_cross_entropy(
                prob, true_binary) * cmd_args.max_decode_steps

        if cmd_args.loss_type == 'perplexity':
            my_perp_loss = MyPerpLoss()
            return my_perp_loss(true_binary, rule_masks, raw_logits)

        if cmd_args.loss_type == 'vanilla':
            exp_pred = paddle.exp(raw_logits) * rule_masks + 1e-30
            norm = paddle.sum(exp_pred, 2, keepdim=True)
            prob = paddle.divide(exp_pred, norm)

            ll = paddle.abs(paddle.sum(true_binary * prob, 2))
            mask = 1 - rule_masks[:, :, -1]
            logll = mask * paddle.log(ll)

            loss = -paddle.sum(logll) / true_binary.shape[1]

            return loss
        print('unknown loss type %s' % cmd_args.loss_type)
        raise NotImplementedError