コード例 #1
0
    def test_dynamic_api(self):
        paddle.disable_static()
        x = paddle.to_tensor(self.input_x)
        y = paddle.to_tensor(self.input_y)
        z = paddle.to_tensor(self.input_z)

        a = paddle.to_tensor(self.input_a)
        b = paddle.to_tensor(self.input_b)
        c = paddle.to_tensor(self.input_c)

        res = paddle.subtract(x, y)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected1))

        # test broadcast
        res = paddle.subtract(x, z)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected2))

        res = paddle.subtract(a, c)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected3))

        res = paddle.subtract(b, c)
        res = res.numpy()
        self.assertTrue(np.allclose(res, self.np_expected4))
コード例 #2
0
def build_program():
    main_program = paddle.static.Program()
    startup_program = paddle.static.Program()

    with paddle.static.program_guard(main_program, startup_program):
        with paddle.static.device_guard('cpu'):
            data = paddle.ones([4, 64], dtype='float32', name='data')

        # data -> [memcpy_h2d] -> data' -> [matmul] -> out ->[add] -> add_out
        with paddle.static.device_guard('gpu'):
            weight = paddle.randn([64, 64], name='weight')  # gpu
            matmul_out = paddle.matmul(data, weight, name='matmul_out')  # gpus
            bias = paddle.ones([4, 64], dtype='float32', name='bias')
            add_out = paddle.add(matmul_out, bias, name='add_out')

        # add_out -> [memcpy_d2h] -> add_out' -> [sub] -> sub_out -> [tanh] -> tanh_out
        with paddle.static.device_guard('cpu'):
            sub_out = paddle.subtract(add_out, data, name='sub_out')
            tanh_out = paddle.tanh(sub_out, name='tanh_out')

        with paddle.static.device_guard('gpu'):
            bias_1 = paddle.add(bias, sub_out, name='bias_1')
            out_before = paddle.tanh(bias_1, name='out_before')
            out_last = paddle.subtract(tanh_out, data, name='out_last')

            out = paddle.add(out_before, out_last, name='out')
            mean = paddle.mean(out, name='mean_out')

    return main_program, startup_program, [mean]
コード例 #3
0
    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
            result_max = paddle.subtract(data_x, data_y)
            exe = paddle.static.Executor(self.place)
            res, = exe.run(feed={
                "x": self.input_x,
                "y": self.input_y
            },
                           fetch_list=[result_max])
        self.assertTrue(np.allclose(res, self.np_expected1))

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_z = paddle.static.data("z", shape=[15], dtype="float32")
            result_max = paddle.subtract(data_x, data_z)
            exe = paddle.static.Executor(self.place)
            res, = exe.run(feed={
                "x": self.input_x,
                "z": self.input_z
            },
                           fetch_list=[result_max])
        self.assertTrue(np.allclose(res, self.np_expected2))

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_a = paddle.static.data("a", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_max = paddle.subtract(data_a, data_c)
            exe = paddle.static.Executor(self.place)
            res, = exe.run(feed={
                "a": self.input_a,
                "c": self.input_c
            },
                           fetch_list=[result_max])
        self.assertTrue(np.allclose(res, self.np_expected3))

        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            data_b = paddle.static.data("b", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_max = paddle.subtract(data_b, data_c)
            exe = paddle.static.Executor(self.place)
            res, = exe.run(feed={
                "b": self.input_b,
                "c": self.input_c
            },
                           fetch_list=[result_max])
        self.assertTrue(np.allclose(res, self.np_expected4))
コード例 #4
0
    def test_name(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name="x", shape=[2, 3], dtype="float32")
            y = paddle.static.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = paddle.subtract(x, y, name='add_res')
            self.assertEqual(('add_res' in y_1.name), True)
コード例 #5
0
ファイル: model.py プロジェクト: zhoucc/PaddleRec
    def net(self, inputs, is_infer=False):
        pyramid_model = MatchPyramidLayer(
            self.emb_path, self.vocab_size, self.emb_size, self.kernel_num,
            self.conv_filter, self.conv_act, self.hidden_size, self.out_size,
            self.pool_size, self.pool_stride, self.pool_padding,
            self.pool_type, self.hidden_act)
        prediction = pyramid_model(inputs)

        if is_infer:
            self._infer_results["prediction"] = prediction
            return

        pos = paddle.slice(
            prediction, axes=[0, 1], starts=[0, 0], ends=[64, 1])
        neg = paddle.slice(
            prediction, axes=[0, 1], starts=[64, 0], ends=[128, 1])
        loss_part1 = paddle.subtract(
            paddle.full(
                shape=[64, 1], fill_value=1.0, dtype='float32'), pos)
        loss_part2 = paddle.add(loss_part1, neg)
        loss_part3 = paddle.maximum(
            paddle.full(
                shape=[64, 1], fill_value=0.0, dtype='float32'),
            loss_part2)

        avg_cost = paddle.mean(loss_part3)
        self._cost = avg_cost
コード例 #6
0
    def test_static(self):
        with paddle.static.program_guard(paddle.static.Program()):

            x_np = np.array([2, 3, 4]).astype('float32')
            y_np = np.array([1, 5, 2]).astype('float32')

            x = paddle.static.data(name="x", shape=[3], dtype='float32')
            y = paddle.static.data(name="y", shape=[3], dtype='float32')

            x_reshape = paddle.reshape(x, [3, 1])
            y_reshape = paddle.reshape(y, [3, 1])
            z = paddle.subtract(x_reshape, y_reshape)
            z = paddle.reshape(z, shape=[3])

            place = paddle.NPUPlace(0)
            exe = paddle.static.Executor(place)
            x_value, y_value, z_value = exe.run(feed={
                "x": x_np,
                "y": y_np
            },
                                                fetch_list=[x, y, z])

            z_expected = np.array([1., -2., 2.])
            self.assertEqual(
                (x_value == x_np).all(),
                True,
                msg="x_value = {}, but expected {}".format(x_value, x_np))
            self.assertEqual(
                (y_value == y_np).all(),
                True,
                msg="y_value = {}, but expected {}".format(y_value, y_np))
            self.assertEqual((z_value == z_expected).all(),
                             True,
                             msg="z_value = {}, but expected {}".format(
                                 z_value, z_expected))
コード例 #7
0
    def forward(self, x, y):
        if in_dygraph_mode():
            sub = _C_ops.elementwise_sub(x, y)
            return _C_ops.final_state_p_norm(sub, self.p, 1, self.epsilon,
                                             self.keepdim, False)

        if _in_legacy_dygraph():
            sub = _C_ops.elementwise_sub(x, y)
            return _C_ops.p_norm(sub, 'axis', 1, 'porder', self.p, 'keepdim',
                                 self.keepdim, 'epsilon', self.epsilon)

        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'PairwiseDistance')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'],
                                 'PairwiseDistance')
        sub = paddle.subtract(x, y)

        helper = LayerHelper("PairwiseDistance", name=self.name)
        attrs = {
            'axis': 1,
            'porder': self.p,
            'keepdim': self.keepdim,
            'epsilon': self.epsilon,
        }
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='p_norm',
                         inputs={'X': sub},
                         outputs={'Out': out},
                         attrs=attrs)

        return out
コード例 #8
0
    def net(self, input, is_infer=False):
        pyramid_model = MatchPyramidLayer(
            self.emb_path, self.vocab_size, self.emb_size, self.kernel_num,
            self.conv_filter, self.conv_act, self.hidden_size, self.out_size,
            self.pool_size, self.pool_stride, self.pool_padding,
            self.pool_type, self.hidden_act)
        prediction = pyramid_model(input)

        if is_infer:
            fetch_dict = {'prediction': prediction}
            return fetch_dict

        # calculate hinge loss
        pos = paddle.slice(prediction,
                           axes=[0, 1],
                           starts=[0, 0],
                           ends=[64, 1])
        neg = paddle.slice(prediction,
                           axes=[0, 1],
                           starts=[64, 0],
                           ends=[128, 1])
        loss_part1 = paddle.subtract(
            paddle.full(shape=[64, 1], fill_value=1.0, dtype='float32'), pos)
        loss_part2 = paddle.add(loss_part1, neg)
        loss_part3 = paddle.maximum(
            paddle.full(shape=[64, 1], fill_value=0.0, dtype='float32'),
            loss_part2)
        avg_cost = paddle.mean(loss_part3)

        self.inference_target_var = avg_cost
        self._cost = avg_cost

        fetch_dict = {'cost': avg_cost}
        return fetch_dict
コード例 #9
0
ファイル: model_infer.py プロジェクト: duyiqi17/PaddleRec
def _layer_sub(inputs, node):
    """
    layer_sub, input(-1, emb_size), node(-1, n, emb_size)
    """
    input_re = paddle.unsqueeze(inputs, axis=[1])
    sub_res = paddle.subtract(input_re, node)
    return sub_res
コード例 #10
0
    def softmax_with_cross_entropy(self, shard_logit, shard_one_hot):
        shard_max = paddle.max(shard_logit, axis=1, keepdim=True)
        global_max = shard_max
        paddle.distributed.all_reduce(global_max,
                                      op=paddle.distributed.ReduceOp.MAX)
        shard_logit_new = paddle.subtract(shard_logit, global_max)

        shard_exp = paddle.exp(shard_logit_new)
        shard_demon = paddle.sum(shard_exp, axis=1, keepdim=True)
        global_demon = shard_demon
        paddle.distributed.all_reduce(global_demon,
                                      op=paddle.distributed.ReduceOp.SUM)

        global_log_demon = paddle.log(global_demon)
        shard_log_prob = shard_logit_new - global_log_demon
        shard_prob = paddle.exp(shard_log_prob)

        target_log_prob = paddle.min(shard_log_prob * shard_one_hot,
                                     axis=1,
                                     keepdim=True)
        shard_loss = paddle.scale(target_log_prob, scale=-1.0)
        #TODO paddle.distributed.reducescatter not found
        global_loss = paddle.fluid.layers.collective._c_reducescatter(
            shard_loss, nranks=self.nranks, use_calc_stream=True)
        return global_loss, shard_prob
コード例 #11
0
ファイル: box_clip.py プロジェクト: heliqi/Paddle2ONNX
    def forward(self):
        input = self.input('Input', 0)
        im_info = self.input('ImInfo', 0)
        im_info = paddle.reshape(im_info, shape=[3])
        h, w, s = paddle.tensor.split(im_info, axis=0, num_or_sections=3)
        tensor_one = paddle.full(shape=[1], dtype='float32', fill_value=1.0)
        tensor_zero = paddle.full(shape=[1], dtype='float32', fill_value=0.0)
        h = paddle.subtract(h, tensor_one)
        w = paddle.subtract(w, tensor_one)
        xmin, ymin, xmax, ymax = paddle.tensor.split(input,
                                                     axis=-1,
                                                     num_or_sections=4)
        xmin = paddle.maximum(paddle.minimum(xmin, w), tensor_zero)
        ymin = paddle.maximum(paddle.minimum(ymin, h), tensor_zero)
        xmax = paddle.maximum(paddle.minimum(xmax, w), tensor_zero)
        ymax = paddle.maximum(paddle.minimum(ymax, h), tensor_zero)
        cliped_box = paddle.concat([xmin, ymin, xmax, ymax], axis=-1)

        return {'Output': [cliped_box]}
コード例 #12
0
ファイル: train.py プロジェクト: 965784749-rgb/PaddleRec
def create_loss(batch_size, margin, cos_pos, cos_neg):

    loss_part1 = paddle.subtract(
        paddle.full(shape=[batch_size, 1], fill_value=margin, dtype='float32'),
        cos_pos)
    loss_part2 = paddle.add(loss_part1, cos_neg)
    loss_part3 = paddle.maximum(
        paddle.full(shape=[batch_size, 1], fill_value=0.0, dtype='float32'),
        loss_part2)
    avg_cost = paddle.mean(loss_part3)
    return avg_cost
コード例 #13
0
def create_loss(prediction):
    pos = paddle.slice(prediction, axes=[0, 1], starts=[0, 0], ends=[64, 1])
    neg = paddle.slice(prediction, axes=[0, 1], starts=[64, 0], ends=[128, 1])
    loss_part1 = paddle.subtract(
        paddle.full(shape=[64, 1], fill_value=1.0, dtype='float32'), pos)
    loss_part2 = paddle.add(loss_part1, neg)
    loss_part3 = paddle.maximum(
        paddle.full(shape=[64, 1], fill_value=0.0, dtype='float32'),
        loss_part2)

    avg_cost = paddle.mean(loss_part3)
    return avg_cost
コード例 #14
0
    def _test(self, run_npu=True):
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        main_prog.random_seed = SEED
        startup_prog.random_seed = SEED
        np.random.seed(SEED)

        a_np = np.random.random(size=(32, 32)).astype('float32')
        b_np = np.random.random(size=(32, 32)).astype('float32')
        label_np = np.random.randint(2, size=(32, 1)).astype('int64')

        with paddle.static.program_guard(main_prog, startup_prog):
            a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
            b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
            label = paddle.static.data(name="label",
                                       shape=[32, 1],
                                       dtype='int64')

            sum = paddle.add(a, b)
            c = paddle.assign(b)
            z = paddle.subtract(sum, c)

            fc_1 = fluid.layers.fc(input=z, size=128)
            prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

            cost = fluid.layers.cross_entropy(input=prediction, label=label)
            loss = fluid.layers.reduce_mean(cost)
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        if run_npu:
            place = paddle.NPUPlace(0)
        else:
            place = paddle.CPUPlace()

        exe = paddle.static.Executor(place)
        exe.run(startup_prog)

        for epoch in range(100):

            pred_res, loss_res = exe.run(main_prog,
                                         feed={
                                             "a": a_np,
                                             "b": b_np,
                                             "label": label_np
                                         },
                                         fetch_list=[prediction, loss])
            if epoch % 10 == 0:
                print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
                    epoch, pred_res[0], loss_res))

        return pred_res, loss_res
コード例 #15
0
ファイル: base_model.py プロジェクト: GuoxiaWang/PLSC
    def _margin_softmax(input, label, out_dim, param_attr, margin1, margin2,
                        margin3, scale, sample_ratio):
        input_norm = paddle.sqrt(
            paddle.sum(paddle.square(input), axis=1, keepdim=True))
        input = paddle.divide(input, input_norm)

        if param_attr is None:
            param_attr = paddle.ParamAttr(
                initializer=paddle.nn.initializer.XavierNormal(fan_in=0.0))
        weight = paddle.static.create_parameter(
            shape=[input.shape[1], out_dim],
            dtype='float32',
            name=unique_name.generate('final_fc_w'),
            attr=param_attr)

        if sample_ratio < 1.0:
            # partial fc sample process
            label, sampled_class_index = class_center_sample(
                label, out_dim, ratio=sample_ratio, ignore_label=-1)
            sampled_class_index.stop_gradient = True
            weight = paddle.gather(weight, sampled_class_index, axis=1)
            out_dim = paddle.shape(sampled_class_index)

        weight_norm = paddle.sqrt(
            paddle.sum(paddle.square(weight), axis=0, keepdim=True))
        weight = paddle.divide(weight, weight_norm)
        cos = paddle.matmul(input, weight)

        theta = paddle.acos(cos)
        if margin1 != 1.0:
            theta = margin1 * theta
        if margin2 != 0.0:
            theta = theta + margin2
        margin_cos = paddle.cos(theta)
        if margin3 != 0.0:
            margin_cos = margin_cos - margin3

        one_hot = paddle.nn.functional.one_hot(label, num_classes=out_dim)
        diff = paddle.multiply(paddle.subtract(margin_cos, cos), one_hot)
        target_cos = paddle.add(cos, diff)
        logit = paddle.scale(target_cos, scale=scale)

        loss, prob = paddle.nn.functional.softmax_with_cross_entropy(
            logits=logit,
            label=paddle.reshape(label, (-1, 1)),
            return_softmax=True)
        avg_loss = paddle.mean(x=loss)

        one_hot.stop_gradient = True

        return avg_loss, prob
コード例 #16
0
 def forward(self, predicts, batch):
     if isinstance(predicts, (list, tuple)):
         predicts = predicts[-1]
     predicts = predicts.transpose((1, 0, 2))
     N, B, _ = predicts.shape
     preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
     labels = batch[1].astype("int32")
     label_lengths = batch[2].astype('int64')
     loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
     if self.use_focal_loss:
         weight = paddle.exp(-loss)
         weight = paddle.subtract(paddle.to_tensor([1.0]), weight)
         weight = paddle.square(weight)
         loss = paddle.multiply(loss, weight)
     loss = loss.mean()
     return {'loss': loss}
コード例 #17
0
ファイル: model.py プロジェクト: wbj0110/models
    def forward(self,
                query_input_ids,
                title_input_ids,
                query_token_type_ids=None,
                query_position_ids=None,
                query_attention_mask=None,
                title_token_type_ids=None,
                title_position_ids=None,
                title_attention_mask=None):
        query_token_embedding, _ = self.ptm(query_input_ids,
                                            query_token_type_ids,
                                            query_position_ids,
                                            query_attention_mask)
        query_token_embedding = self.dropout(query_token_embedding)
        query_attention_mask = paddle.unsqueeze(
            (query_input_ids != self.ptm.pad_token_id).astype(
                self.ptm.pooler.dense.weight.dtype),
            axis=2)
        # Set token embeddings to 0 for padding tokens
        query_token_embedding = query_token_embedding * query_attention_mask
        query_sum_embedding = paddle.sum(query_token_embedding, axis=1)
        query_sum_mask = paddle.sum(query_attention_mask, axis=1)
        query_mean = query_sum_embedding / query_sum_mask

        title_token_embedding, _ = self.ptm(title_input_ids,
                                            title_token_type_ids,
                                            title_position_ids,
                                            title_attention_mask)
        title_token_embedding = self.dropout(title_token_embedding)
        title_attention_mask = paddle.unsqueeze(
            (title_input_ids != self.ptm.pad_token_id).astype(
                self.ptm.pooler.dense.weight.dtype),
            axis=2)
        # Set token embeddings to 0 for padding tokens
        title_token_embedding = title_token_embedding * title_attention_mask
        title_sum_embedding = paddle.sum(title_token_embedding, axis=1)
        title_sum_mask = paddle.sum(title_attention_mask, axis=1)
        title_mean = title_sum_embedding / title_sum_mask

        sub = paddle.abs(paddle.subtract(query_mean, title_mean))
        projection = paddle.concat([query_mean, title_mean, sub], axis=-1)

        logits = self.classifier(projection)
        probs = F.softmax(logits)

        return probs
コード例 #18
0
    def __call__(self, predicts, batch):
        if isinstance(predicts, (list, tuple)):
            predicts = predicts[-1]

        B, N = predicts.shape[:2]
        div = paddle.to_tensor([N]).astype('float32')

        predicts = nn.functional.softmax(predicts, axis=-1)
        aggregation_preds = paddle.sum(predicts, axis=1)
        aggregation_preds = paddle.divide(aggregation_preds, div)

        length = batch[2].astype("float32")
        batch = batch[3].astype("float32")
        batch[:, 0] = paddle.subtract(div, length)
        batch = paddle.divide(batch, div)

        loss = self.loss_func(aggregation_preds, batch)
        return {"loss_ace": loss}
コード例 #19
0
ファイル: model.py プロジェクト: 965784749-rgb/PaddleRec
    def net(self, input, is_infer=False):
        """ network"""
        if is_infer:
            self.batch_size = envs.get_global_env(
                "dataset.inferdata.batch_size")
        else:
            self.batch_size = envs.get_global_env(
                "dataset.sample_1.batch_size")
        tagspace_model = TagspaceLayer(self.vocab_text_size,
                                       self.vocab_tag_size, self.emb_dim,
                                       self.hid_dim, self.win_size,
                                       self.margin, self.neg_size,
                                       self.text_len)
        cos_pos, cos_neg = tagspace_model(input)
        # calculate hinge loss
        loss_part1 = paddle.subtract(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=self.margin,
                        dtype='float32'), cos_pos)
        loss_part2 = paddle.add(loss_part1, cos_neg)
        loss_part3 = paddle.maximum(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=0.0,
                        dtype='float32'), loss_part2)
        avg_cost = paddle.mean(loss_part3)

        less = paddle.cast(paddle.less_than(cos_neg, cos_pos), dtype='float32')
        label_ones = paddle.full(dtype='float32',
                                 shape=[self.batch_size, 1],
                                 fill_value=1.0)
        correct = paddle.sum(less)
        total = paddle.sum(label_ones)
        acc = paddle.divide(correct, total)
        self._cost = avg_cost

        if is_infer:
            self._infer_results["acc"] = acc
            self._infer_results["loss"] = self._cost
        else:
            self._metrics["acc"] = acc
            self._metrics["loss"] = self._cost
コード例 #20
0
ファイル: static_model.py プロジェクト: JohnGao1007/paddle
    def net(self, input, is_infer=False):
        if is_infer:
            self.batch_size = self.config.get("runner.infer_batch_size")
        else:
            self.batch_size = self.config.get("runner.train_batch_size")
        tagspace_model = TagspaceLayer(self.vocab_text_size,
                                       self.vocab_tag_size, self.emb_dim,
                                       self.hid_dim, self.win_size,
                                       self.margin, self.neg_size,
                                       self.text_len)
        cos_pos, cos_neg = tagspace_model(input)
        # calculate hinge loss
        loss_part1 = paddle.subtract(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=self.margin,
                        dtype='float32'), cos_pos)
        loss_part2 = paddle.add(loss_part1, cos_neg)
        loss_part3 = paddle.maximum(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=0.0,
                        dtype='float32'), loss_part2)
        avg_cost = paddle.mean(loss_part3)

        less = paddle.cast(paddle.less_than(cos_neg, cos_pos), dtype='float32')
        label_ones = paddle.full(dtype='float32',
                                 shape=[self.batch_size, 1],
                                 fill_value=1.0)
        correct = paddle.sum(less)
        total = paddle.sum(label_ones)
        acc = paddle.divide(correct, total)
        self.inference_target_var = acc

        if is_infer:
            fetch_dict = {'ACC': acc}
            return fetch_dict

        self._cost = avg_cost

        fetch_dict = {'cost': avg_cost, 'ACC': acc}
        return fetch_dict
コード例 #21
0
    def net(self, input, is_infer=False):
        self.q_slots = self._sparse_data_var[0:1]
        self.pt_slots = self._sparse_data_var[1:2]
        if not is_infer:
            self.batch_size = envs.get_global_env(
                "dataset.dataset_train.batch_size")
            self.nt_slots = self._sparse_data_var[2:3]
            inputs = [self.q_slots, self.pt_slots, self.nt_slots]
        else:
            self.batch_size = envs.get_global_env(
                "dataset.dataset_infer.batch_size")
            inputs = [self.q_slots, self.pt_slots]
        simnet_model = MultiviewSimnetLayer(
            self.query_encoder, self.title_encoder, self.query_encode_dim,
            self.title_encode_dim, self.emb_size, self.emb_dim,
            self.hidden_size, self.margin, self.query_len, self.pos_len,
            self.neg_len)
        cos_pos, cos_neg = simnet_model(inputs, is_infer)

        if is_infer:
            self._infer_results['query_pt_sim'] = cos_pos
            return

        # pairwise hinge_loss
        loss_part1 = paddle.subtract(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=self.margin,
                        dtype='float32'), cos_pos)

        loss_part2 = paddle.add(loss_part1, cos_neg)

        loss_part3 = paddle.maximum(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=0.0,
                        dtype='float32'), loss_part2)

        self._cost = paddle.mean(loss_part3)
        self.acc = self.get_acc(cos_neg, cos_pos)
        self._metrics["loss"] = self._cost
        self._metrics["acc"] = self.acc
コード例 #22
0
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
        metric_dict = dict()

        choosen_indices = paddle.argsort(similarities_matrix,
                                         axis=1,
                                         descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(keep_mask.astype('float32'),
                                            choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
        equal_flag = paddle.cast(equal_flag, 'float32')

        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)

        #do accumulative sum
        div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
        minus = paddle.divide(equal_flag, div)
        auxilary = paddle.subtract(equal_flag, minus)
        hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
        all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
        mINP = paddle.mean(all_INP)
        metric_dict["mINP"] = mINP.numpy()[0]
        return metric_dict
コード例 #23
0
ファイル: static_model.py プロジェクト: JohnGao1007/paddle
    def net(self, input, is_infer=False):
        self.q_slots = [input[0]]
        self.pt_slots = [input[1]]
        if not is_infer:
            self.batch_size = self.config.get("runner.train_batch_size")
            self.nt_slots = [input[2]]
            inputs = [self.q_slots, self.pt_slots, self.nt_slots]
        else:
            self.batch_size = self.config.get("runner.infer_batch_size")
            inputs = [self.q_slots, self.pt_slots]
        simnet_model = MultiviewSimnetLayer(
            self.query_encoder, self.title_encoder, self.query_encode_dim,
            self.title_encode_dim, self.emb_size, self.emb_dim,
            self.hidden_size, self.margin, self.query_len, self.pos_len,
            self.neg_len)
        cos_pos, cos_neg = simnet_model(inputs, is_infer)

        self.inference_target_var = cos_pos
        if is_infer:
            fetch_dict = {'query_pt_sim': cos_pos}
            return fetch_dict
        loss_part1 = paddle.subtract(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=self.margin,
                        dtype='float32'), cos_pos)

        loss_part2 = paddle.add(loss_part1, cos_neg)

        loss_part3 = paddle.maximum(
            paddle.full(shape=[self.batch_size, 1],
                        fill_value=0.0,
                        dtype='float32'), loss_part2)

        avg_cost = paddle.mean(loss_part3)
        self._cost = avg_cost
        self.acc = self.get_acc(cos_neg, cos_pos)
        fetch_dict = {'Acc': self.acc, 'Loss': avg_cost}
        return fetch_dict
コード例 #24
0
ファイル: module.py プロジェクト: zfzf1990/PaddleHub
    def forward(self,
                input_ids=None,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None,
                query_input_ids=None,
                query_token_type_ids=None,
                query_position_ids=None,
                query_attention_mask=None,
                title_input_ids=None,
                title_token_type_ids=None,
                title_position_ids=None,
                title_attention_mask=None,
                seq_lengths=None,
                labels=None):

        if self.task != 'text-matching':
            result = self.model(input_ids, token_type_ids, position_ids,
                                attention_mask)
        else:
            query_result = self.model(query_input_ids, query_token_type_ids,
                                      query_position_ids, query_attention_mask)
            title_result = self.model(title_input_ids, title_token_type_ids,
                                      title_position_ids, title_attention_mask)

        if self.task == 'seq-cls':
            logits = result
            probs = F.softmax(logits, axis=1)
            if labels is not None:
                loss = self.criterion(logits, labels)
                correct = self.metric.compute(probs, labels)
                acc = self.metric.update(correct)
                return probs, loss, {'acc': acc}
            return probs
        elif self.task == 'token-cls':
            logits = result
            token_level_probs = F.softmax(logits, axis=-1)
            preds = token_level_probs.argmax(axis=-1)
            if labels is not None:
                loss = self.criterion(logits, labels.unsqueeze(-1))
                num_infer_chunks, num_label_chunks, num_correct_chunks = \
                    self.metric.compute(None, seq_lengths, preds, labels)
                self.metric.update(num_infer_chunks.numpy(),
                                   num_label_chunks.numpy(),
                                   num_correct_chunks.numpy())
                _, _, f1_score = map(float, self.metric.accumulate())
                return token_level_probs, loss, {'f1_score': f1_score}
            return token_level_probs
        elif self.task == 'text-matching':
            query_token_embedding = query_result
            query_token_embedding = self.dropout(query_token_embedding)
            query_attention_mask = paddle.unsqueeze(
                (query_input_ids != self.model.pad_token_id).astype(
                    query_token_embedding.dtype),
                axis=2)
            query_token_embedding = query_token_embedding * query_attention_mask
            query_sum_embedding = paddle.sum(query_token_embedding, axis=1)
            query_sum_mask = paddle.sum(query_attention_mask, axis=1)
            query_mean = query_sum_embedding / query_sum_mask

            title_token_embedding = title_result
            title_token_embedding = self.dropout(title_token_embedding)
            title_attention_mask = paddle.unsqueeze(
                (title_input_ids != self.model.pad_token_id).astype(
                    title_token_embedding.dtype),
                axis=2)
            title_token_embedding = title_token_embedding * title_attention_mask
            title_sum_embedding = paddle.sum(title_token_embedding, axis=1)
            title_sum_mask = paddle.sum(title_attention_mask, axis=1)
            title_mean = title_sum_embedding / title_sum_mask

            sub = paddle.abs(paddle.subtract(query_mean, title_mean))
            projection = paddle.concat([query_mean, title_mean, sub], axis=-1)
            logits = self.classifier(projection)
            probs = F.softmax(logits)
            if labels is not None:
                loss = self.criterion(logits, labels)
                correct = self.metric.compute(probs, labels)
                acc = self.metric.update(correct)
                return probs, loss, {'acc': acc}
            return probs
        else:
            sequence_output, pooled_output = result
            return sequence_output, pooled_output
コード例 #25
0
 def test_quant_subtract(self):
     out_1 = paddle.subtract(self.x, self.y)
     out_2 = paddle.nn.quant.subtract()(self.x, self.y)
     self.check(out_1, out_2)
コード例 #26
0
def sub_prim2orig(op, x, y):
    return paddle.subtract(x, y)
コード例 #27
0
ファイル: test_forward.py プロジェクト: grant-arm/tvm
 def add_subtract(inputs):
     return paddle.subtract(paddle.add(inputs, inputs), inputs)
コード例 #28
0
 def subtract_wrapper(self, x):
     return paddle.subtract(x[0], x[1])
コード例 #29
0
 def _executed_api(self, x, y, name=None):
     return paddle.subtract(x, y, name)
コード例 #30
0
 def forward(self, x, y, name=None):
     return paddle.subtract(x, y, name)