def do_train(args): paddle.enable_static() if not args.eager_run else None paddle.set_device("gpu" if args.n_gpu else "cpu") if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() dataset_class, metric_class = TASK_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_dataset, dev_dataset = dataset_class.get_datasets(["train", "dev"]) tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial(convert_example, tokenizer=tokenizer, label_list=train_dataset.get_labels(), max_seq_length=args.max_seq_length) train_dataset = train_dataset.apply(trans_func, lazy=True) # train_batch_sampler = SamplerHelper(train_dataset).shuffle().batch( # batch_size=args.batch_size).shard() train_batch_sampler = paddle.io.DistributedBatchSampler( # train_dataset, batch_size=args.batch_size, shuffle=True) train_dataset, batch_size=args.batch_size, shuffle=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # input Pad(axis=0, pad_val=tokenizer.vocab[tokenizer.pad_token]), # segment Stack(), # length Stack(dtype="int64" if train_dataset.get_labels() else "float32") # label ): [data for i, data in enumerate(fn(samples)) if i != 2] train_data_loader = DataLoader(dataset=train_dataset, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_dataset = dev_dataset.apply(trans_func, lazy=True) # dev_batch_sampler = SamplerHelper(dev_dataset).batch( # batch_size=args.batch_size) dev_batch_sampler = paddle.io.BatchSampler(dev_dataset, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader(dataset=dev_dataset, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) # model = model_class.from_pretrained( # args.model_name_or_path,) num_classes=len(train_dataset.get_labels())) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else len( train_data_loader) * args.num_train_epochs lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, args.warmup_steps) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params) loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels( ) else paddle.nn.loss.MSELoss() metric = metric_class() ### TODO: use hapi # trainer = paddle.hapi.Model(model) # trainer.prepare(optimizer, loss_fct, paddle.metric.Accuracy()) # trainer.fit(train_data_loader, # dev_data_loader, # log_freq=args.logging_steps, # epochs=args.num_train_epochs, # save_dir=args.output_dir) model.eval() param_names = list(model.state_dict().keys()) import pickle with open(args.params_pd_path, "rb") as f: np_params = pickle.load(f) model.set_state_dict(dict(zip(param_names, np_params))) paddle.save(model.state_dict(), "%s.pdparams" % args.model_name_or_path) for data in train_data_loader(): print(model(*data[:-1])) exit(0) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) if global_step % args.logging_steps == 0: print( "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s" % (global_step, epoch, step, loss, args.logging_steps / (time.time() - tic_train))) tic_train = time.time() loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.save_steps == 0: evaluate(model, loss_fct, metric, dev_data_loader) if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0: paddle.save( model.state_dict(), os.path.join(args.output_dir, "model_%d.pdparams" % global_step)) global_step += 1
def do_train(args): paddle.set_device(args.device) if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() metric_class = METRIC_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_ds = load_dataset('glue', args.task_name, splits="train") tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial(convert_example, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=args.max_seq_length) train_ds = train_ds.map(trans_func, lazy=True) train_batch_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=args.batch_size, shuffle=False) # for same data when converting batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment Stack(dtype="int64" if train_ds.label_list else "float32") # label ): fn(samples) train_data_loader = DataLoader(dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) if args.task_name == "mnli": dev_ds_matched, dev_ds_mismatched = load_dataset( 'glue', args.task_name, splits=["dev_matched", "dev_mismatched"]) dev_ds_matched = dev_ds_matched.map(trans_func, lazy=True) dev_ds_mismatched = dev_ds_mismatched.map(trans_func, lazy=True) dev_batch_sampler_matched = paddle.io.BatchSampler( dev_ds_matched, batch_size=args.batch_size, shuffle=False) dev_data_loader_matched = DataLoader( dataset=dev_ds_matched, batch_sampler=dev_batch_sampler_matched, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_batch_sampler_mismatched = paddle.io.BatchSampler( dev_ds_mismatched, batch_size=args.batch_size, shuffle=False) dev_data_loader_mismatched = DataLoader( dataset=dev_ds_mismatched, batch_sampler=dev_batch_sampler_mismatched, collate_fn=batchify_fn, num_workers=0, return_list=True) else: dev_ds = load_dataset('glue', args.task_name, splits='dev') dev_ds = dev_ds.map(trans_func, lazy=True) dev_batch_sampler = paddle.io.BatchSampler(dev_ds, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader(dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) num_classes = 1 if train_ds.label_list == None else len( train_ds.label_list) # model = model_class.from_pretrained( # args.model_name_or_path, num_classes=num_classes) model = BertForPretraining( BertModel(**model_class.pretrained_init_configuration[ args.model_name_or_path])) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else ( len(train_data_loader) * args.num_train_epochs) warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, warmup) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, beta1=0.9, beta2=0.999, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params) loss_fct = paddle.nn.loss.CrossEntropyLoss( ) if train_ds.label_list else paddle.nn.loss.MSELoss() metric = metric_class() if args.use_amp: scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss) # load converted model and run once to compare model.eval() param_names = list(model.state_dict().keys()) import pickle with open(args.params_pd_path, "rb") as f: np_params = pickle.load(f) model.set_state_dict(dict(zip(param_names, np_params))) paddle.save(model.state_dict(), "%s.pdparams" % args.model_name_or_path) for data in train_data_loader(): print(model(*data[:-1])) exit(0) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): global_step += 1 input_ids, segment_ids, labels = batch with paddle.amp.auto_cast( args.use_amp, custom_white_list=["layer_norm", "softmax", "gelu"]): logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) if args.use_amp: scaler.scale(loss).backward() scaler.minimize(optimizer, loss) else: loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.logging_steps == 0: print( "global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s" % (global_step, num_training_steps, epoch, step, paddle.distributed.get_rank(), loss, optimizer.get_lr(), args.logging_steps / (time.time() - tic_train))) tic_train = time.time() if global_step % args.save_steps == 0 or global_step == num_training_steps: tic_eval = time.time() if args.task_name == "mnli": evaluate(model, loss_fct, metric, dev_data_loader_matched) evaluate(model, loss_fct, metric, dev_data_loader_mismatched) print("eval done total : %s s" % (time.time() - tic_eval)) else: evaluate(model, loss_fct, metric, dev_data_loader) print("eval done total : %s s" % (time.time() - tic_eval)) if paddle.distributed.get_rank() == 0: output_dir = os.path.join( args.output_dir, "%s_ft_model_%d.pdparams" % (args.task_name, global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir)