def test_case6(self): paddle.disable_static() model = ModelCase2() predictor = TableLatencyPredictor(f'./{opt_tool}', hardware='845', threads=4, power_mode=3, batchsize=1) pbmodel_file = predictor.opt_model(model, input_shape=[1, 3, 224, 224], save_dir='./model', data_type='int8', task_type='det') assert os.path.exists(pbmodel_file) latency = predictor.predict_latency(model, input_shape=[1, 3, 224, 224], save_dir='./model', data_type='fp32', task_type='det') assert latency > 0
def test_case10(self): paddle.disable_static() model = ModelCase1() predictor = TableLatencyPredictor(f'./{opt_tool}', hardware='845', threads=4, power_mode=3, batchsize=1) pbmodel_file = predictor.opt_model(model, input_shape=[1, 116, 28, 28], save_dir='./model', data_type='int8', task_type='seg') paddle.enable_static() with open(pbmodel_file, "rb") as f: program_desc_str = f.read() fluid_program = paddle.fluid.framework.Program.parse_from_string( program_desc_str) graph = paddleslim.core.GraphWrapper(fluid_program) graph_keys = predictor._get_key_info_from_graph(graph=graph) assert len(graph_keys) > 0