コード例 #1
0
ファイル: sql.py プロジェクト: davips/automl-paje_archived
    def get_data_by_uuid_impl(self, datauuid):
        sql = f'''
                select 
                    X,Y,Z,P,U,V,W,Q,R,S,l,m,T,C,cols,nested,des
                from 
                    data 
                        left join dataset on dataset=dsid 
                        left join hist on hist=hid
                        left join attr on attr=aid
                where 
                    did=?'''
        self.query(sql, [datauuid])
        row = self.get_one()
        if row is None:
            return None

        # Recover requested matrices/vectors.
        # TODO: surely there is duplicated code to be refactored in this file!
        dic = {'name': row['des'], 'history': zlibext_unpack(row['nested'])}
        fields = [
            Data.from_alias[k] for k, v in row.items()
            if len(k) == 1 and v is not None
        ]
        for field in fields:
            mid = row[field]
            if mid is not None:
                self.query(f'select val,w,h from mat where mid=?', [mid])
                rone = self.get_one()
                dic[field] = unpack_data(rone['val'], rone['w'], rone['h'])
        return Data(columns=zlibext_unpack(row['cols']), **dic)
コード例 #2
0
ファイル: sql.py プロジェクト: davips/automl-paje_archived
 def get_finished_names_by_mark_impl(self, mark):
     """
     Finished means nonfailed and unlocked results.
     The original datasets will not be returned.
     original dataset = stored with no history of transformations.
     All results are returned (apply & use, as many as there are),
      so the names come along with their history,
     :param mark:
     :return: [dicts]
     """
     self.query(
         f"""
             select
                 des, nested
             from
                 res join data on dtr=did 
                     join dataset on dataset=dsid 
                     join hist on hist=hid 
             where
                 end!='0000-00-00 00:00:00' and 
                 fail=0 and mark=?
         """, [mark])
     rows = self.get_all()
     if rows is None:
         return None
     else:
         for row in rows:
             row['name'] = row.pop('des')
             row['history'] = zlibext_unpack(row.pop('nested'))
         return rows
コード例 #3
0
ファイル: sql.py プロジェクト: davips/automl-paje_archived
    def get_data_by_name_impl(self, name, fields=None, history=None):
        """
        To just recover the original dataset you can pass history=None.
        Specify fields if you want to reduce traffic, otherwise all available
        fields will be fetched.

        ps. 1: Obviously, when getting prediction data (i.e., results),
         the history which led to the predictions should be provided.
        :param name:
        :param fields: None=get full Data; case insensitive; e.g. 'X,y,Z'
        :param history: nested tuples
        :param just_check_exists:
        :return:
        """
        hist_uuid = uuid(zlibext_pack(history))

        sql = f'''
                select 
                    X,Y,Z,P,U,V,W,Q,R,S,l,m,T,C,cols,des
                from 
                    data 
                        left join dataset on dataset=dsid 
                        left join attr on attr=aid
                where 
                    des=? and hist=?'''
        self.query(sql, [name, hist_uuid])
        row = self.get_one()
        if row is None:
            return None

        # Recover requested matrices/vectors.
        dic = {'name': name, 'history': history}
        if fields is None:
            flst = [k for k, v in row.items() if len(k) == 1 and v is not None]
        else:
            flst = fields.split(',')
        for field in flst:
            mid = row[field]
            if mid is not None:
                self.query(f'select val,w,h from mat where mid=?', [mid])
                rone = self.get_one()
                dic[field] = unpack_data(rone['val'], rone['w'], rone['h'])
        return Data(columns=zlibext_unpack(row['cols']), **dic)
コード例 #4
0
ファイル: sql.py プロジェクト: davips/automl-paje_archived
    def get_result_impl(self, component: Component, input_data):
        """
        Look for a result in database. Download only affected matrices/vectors.
        ps.: put a model inside component requested
        :return: Resulting Data
        """
        if component.failed or component.locked_by_others:
            return None, True, component.failed is not None
        fields = [Data.from_alias[f] for f in component.modifies(component.op)]

        if self._dump:
            raise Exception('Are we really starting to store dump of '
                            'components?')
        self.query(
            f'''
            select 
                des, spent, fail, end, host, nested as history, cols
                {',' + ','.join(fields) if len(fields) > 0 else ''}
                {', dump' if self._dump else ''}
            from 
                res 
                    left join data on dout = did
                    left join dataset on dataset = dsid
                    left join hist on hist = hid
                    left join attr on attr = aid
                    {'left join inst on inst=iid' if self._dump else ''}                    
            where                
                config=? and op=? and dtr=? and din=?''', [
                component.uuid, component.op,
                component.train_data_uuid__mutable(),
                input_data.uuid()
            ])
        result = self.get_one()
        if result is None:
            return None, False, False
        if result['des'] is not None:
            # sanity check
            if result['des'] != input_data.name:
                raise Exception('Resulting data name differs from input data',
                                f"{result['des']}!={input_data.name}")

            # Recover relevant matrices/vectors.
            dic = {'X': None}
            for field in fields:
                mid = result[field]
                if mid is not None:
                    self.query(f'select val,w,h from mat where mid=?', [mid])
                    rone = self.get_one()
                    if rone is not None:
                        dic[field] = \
                            unpack_data(rone['val'], rone['w'], rone['h'])

            # Create Data.
            history = zlibext_unpack(result['history'])
            columns = zlibext_unpack(result['cols'])
            data = Data(name=result['des'],
                        history=history,
                        columns=columns,
                        **dic)

            # Join untouched matrices/vectors.
            output_data = input_data.merged(data)
        else:
            output_data = None
        component.model = result['dump'].model if 'dump' in result else None
        component.time_spent = result['spent']
        component.failed = result['fail'] and result['fail'] == 1
        component.locked_by_others = result['end'] == '0000-00-00 00:00:00'
        component.host = result['host']
        ended = component.failed is not None
        return output_data, True, ended