コード例 #1
0
ファイル: obstacle.py プロジェクト: Katrin92/gyro
class Obstacle:
    def __init__(self, x, y, z):

        self.model = loader.loadModel("models/cube")
        self.model.reparentTo(render)
        self.model.setPos(x, y, z)
        self.model.setHpr(0, 0, 0)
        self.model.setColor(0.9, 0.9, 0.9, 1)
        self.model.setTexture(loader.loadTexture("textures/texture.png"))

    def enable_physics(self, physics):

        self.body = OdeBody(physics.world)
        self.initial_position = self.model.getPos(render)
        self.initial_quaternion = self.model.getQuat(render)
        self.reset()

        mass = OdeMass()
        mass.setBox(0.2, 1, 1, 1)
        self.body.setMass(mass)

        self.geom = OdeBoxGeom(physics.space, 1, 1, 1)
        self.geom.setBody(self.body)

        physics.bodymodels[self.body] = self.model

    def reset(self):
        self.body.setPosition(self.initial_position)
        self.body.setQuaternion(self.initial_quaternion)
        self.body.setLinearVel(0, 0, 0)
        self.body.setAngularVel(0, 0, 0)
コード例 #2
0
    def initPlanet(self, parent, tex, pos, radius, mass, lvel, avel):
        planet = loader.loadModel(self.main.modeld + "planet")
        planet.reparentTo(parent)
        planet_tex = loader.loadTexture(tex)
        planet.setTexture(planet_tex)
        planet.setPos(pos)
        planet.setScale(radius)

        body = OdeBody(self.main.physicsWorld)
        M = OdeMass()
        M.setSphereTotal(mass, radius)
        body.setMass(M)
        body.setPosition(planet.getPos(parent))
        body.setQuaternion(planet.getQuat(parent))
        body.setLinearVel(lvel)
        body.setAngularVel(avel)

        geom = OdeSphereGeom(self.main.space, radius)
        geom.setBody(body)

        self.main.getPlist().append(planet)
        self.main.getBlist().append(body)
        self.main.getGlist().append(geom)
コード例 #3
0
class AeroplanePhysics(Physical):
    def __init__(self, node):

        Physical.__init__(self)

        self.node = node
        self.thrust = 0.0
        self.loadSpecs()

        # precalculated values for combinations of variables
        self.setCalculationConstants()

        # dynamic variables
        self.acceleration = Vec3(0.0,0.0,0.0)
        self.angle_of_attack = 0.0
        
        # state variables
        self.rudder = 0.0
        self.ailerons = 0.0
        self.elevator = 0.0
        
        
        self.ode_body = OdeBody(self.world)
        # positions and orientation are set relative to render
        self.ode_body.setPosition(self.node.getPos(render))
        self.ode_body.setQuaternion(self.node.getQuat(render))
        
        self.ode_mass = OdeMass()
        self.ode_mass.setBox(self.mass, 1, 1, 1)
        self.ode_body.setMass(self.ode_mass)
        
        self.accumulator = 0.0
        self.step_size = 0.02
        taskMgr.add(self.simulationTask,
                    "plane physics",
                    sort=-1,
                    taskChain="world")

    def loadSpecs(self):
        """Loads specifications for a plane. Force if already loaded."""

        # TODO (gjmm): these are specifications and should be moved to a file

        self.mass = 1000
        self.max_thrust = 5000.0

        self.wing_area = 48.0 # m^2
        self.wing_span = 24.0 # m

        self.drag_coef_x = 0.9
        self.drag_coef_y = 0.1
        self.drag_coef_z = 0.9
        self.drag_area_x = 30.0
        self.drag_area_y = 2.75
        self.drag_area_z = 50.0
        self.aspect_ratio = self.wing_span * self.wing_span /self.wing_area

        # What the hell is this?! I still don't get it... :-(
        # Does this need to be individual per plane?
        # -Nemesis13
        self.liftvsaoa = ListInterpolator([[radians(-10.0),-0.4],
                                           [radians(-8.0),-0.45],
                                           [radians(15.0),1.75],
                                           [radians(18.0),1.05]],
                                           0.0,0.0)
        self.dragvsaoa = ListInterpolator([[radians(-10.0),-0.010],
                                           [radians(0.0),0.006],
                                           [radians(4.0),0.005],
                                           [radians(8.0),0.0065],
                                           [radians(12.0),0.012],
                                           [radians(14.0),0.020],
                                           [radians(16.0),0.028]],
                                           0.03,0.1)

        self.yaw_damping = -100
        self.pitch_damping = -100
        self.roll_damping = -100
        
        self.terminal_yaw = 3
        self.terminal_pitch = 3
        self.terminal_roll = 3
        
        self.rudder_coefficient = 1.0
        self.elevator_coefficient = 4.5
        self.ailerons_coefficient = 5.5
        
        self.pitch_force_coefficient = 4.0
        self.heading_force_coefficient = 1.0
        self.pitch_torque_coefficient = 0.1
        self.heading_torque_coefficient = 12.0
    
    def move(self, movement):
        """Plane movement management."""
        if movement == "roll-left":
            self.ailerons = -1.0
        elif movement == "roll-right":
            self.ailerons = 1.0
        elif movement == "pitch-up":
            self.elevator = 1.0
        elif movement == "pitch-down":
            self.elevator = -1.0
        elif movement == "heading-left":
            self.rudder = 1.0
        elif movement == "heading-right":
            self.rudder = -1.0

    def chThrust(self, value):
        delta_time = global_clock.getDt()
        if value == "add" and self.thrust < 1.0:
            self.thrust += 0.01
        elif value == "subtract" and self.thrust > 0.0:
            self.thrust -= 0.01

    def setThrust(self, value):
        if value <= 0:
            self.thrust = 0
        elif value >= 1:
            self.thrust = 1
        else:
            self.thrust = value

    def getThrust(self):
        return self.thrust

    def setCalculationConstants(self):
        """pre-calculate some calculation constants from the
        flight parameters"""
        # density of air: rho = 1.2041 kg m-3
        half_rho = 0.602
        self.lift_factor = half_rho * self.wing_area

        # could modify lift_induced_drag by a factor of 1.05 to 1.15
        self.lift_induced_drag_factor = (-1.0) * self.lift_factor / \
                                        (pi*self.aspect_ratio)
        self.drag_factor_x = (-1.0) * half_rho * self.drag_area_x * \
                                                 self.drag_coef_x
        self.drag_factor_y = (-1.0) * half_rho * self.drag_area_y * \
                                                 self.drag_coef_y
        self.drag_factor_z = (-1.0) * half_rho * self.drag_area_z * \
                                                 self.drag_coef_z

        self.gravity = Vec3(0.0,0.0,-9.81) 
        self.gravityM = self.gravity * self.mass

    def _wingAngleOfAttack(self,v_norm,up):
        """ calculate the angle between the wing and the relative motion of the air """

        #projected_v = v_norm - right * v_norm.dot(right)
        #aoa = atan2(projected_v.dot(-up), projected_v.dot(forward))
        #return aoa

        # strangely enough, the above gets the same result as the below
        # for these vectors it must be calculating the angle in the plane where
        # right is the normal vector

        return v_norm.angleRad(up) - pi/2.0


    def _lift(self,v_norm,v_squared,right,aoa):
        """return the lift force vector generated by the wings"""
        # lift direction is always perpendicular to the airflow
        lift_vector = right.cross(v_norm)
        return lift_vector * v_squared * self.lift_factor * self.liftvsaoa[aoa]

    def _drag(self,v,v_squared,right,up,forward,aoa):
        """return the drag force"""

        # get the induced drag coefficient
        # Cdi = (Cl*Cl)/(pi*AR*e)

        lift_coef = self.liftvsaoa[aoa]
        ind_drag_coef = lift_coef * lift_coef / (pi * self.aspect_ratio * 1.10)

        # and calculate the drag induced by the creation of lift
        induced_drag =  -v * sqrt(v_squared) * self.lift_factor * ind_drag_coef
        #induced_drag = Vec3(0.0,0.0,0.0)
        profile_drag = self._simpleProfileDrag(v,right,up,forward)

        return induced_drag + profile_drag

    def _simpleProfileDrag(self,v,right,up,forward):
        """return the force vector due to the shape of the aircraft"""
        speed_x = right.dot(v)
        speed_y = forward.dot(v)
        speed_z = up.dot(v)

        drag_x = right*speed_x*abs(speed_x)*self.drag_factor_x
        drag_y = forward*speed_y*abs(speed_y)*self.drag_factor_y
        drag_z = up*speed_z*abs(speed_z)*self.drag_factor_z
        return drag_x + drag_y + drag_z

    def _thrust(self,thrust_vector):
        """return the force vector produced by the aircraft engines"""
        return thrust_vector * self.thrust * self.max_thrust

    def _force(self,p,v,right,up,forward):
        """calculate the forces due to the velocity and orientation of the aircraft"""
        v_squared = v.lengthSquared()
        v_norm = v + v.zero()
        v_norm.normalize()

        aoa = self._wingAngleOfAttack(v_norm,up)
        lift = self._lift(v_norm,v_squared,right,aoa)
        drag = self._drag(v,v_squared,right,up,forward,aoa)
        thrust = self._thrust(forward)
        self.angle_of_attack = aoa

        force = lift + drag + self.gravityM + thrust

        # if the plane is on the ground, the ground reacts to the downward force
        # TODO (gjmm): need to modify in order to consider reaction to objects
        #              at different altitudes.
        if p.getZ() == 0.0:
            if force[2] < 0.0:
                force.setZ(0.0)
        
        return force
    
    def angleOfAttack(self):
        return self.angle_of_attack
    def gForceTotal(self):
        acc = self.acceleration - self.gravity
        return acc.length()/9.81
    def gForce(self):
        up = self.node.getQuat().getUp()
        acc = self.acceleration - self.gravity
        gf = acc.dot(up) / 9.81
        return gf

    def lateralG(self):
        right = self.node.getQuat().getRight()
        acc = self.acceleration - self.gravity
        gf = acc.dot(right) / 9.81
        return gf

    def axialG(self):
        forward = self.node.getQuat().getForward()
        acc = self.acceleration - self.gravity
        gf = acc.dot(forward) / 9.81
        return gf

    def velocity(self):
        """ return the current velocity """
        #return self.physics_object.getVelocity()
        return Vec3(self.ode_body.getLinearVel())
    def setVelocity(self,v):
        self.ode_body.setLinearVel(v)
    
    def angVelVector(self):
        """ return the current angular velocity as a vector """
        return self.ode_body.getAngularVel()
    
    def angVelBodyHpr(self):
        """ return the heading, pitch and roll values about the body axis """
        angv = self.angVelVector()
        quat = self.quat()
        h = angv.dot(quat.getUp())
        p = angv.dot(quat.getRight())
        r = angv.dot(quat.getForward())
        return h,p,r
    
    def setAngularVelocity(self,v):
        self.ode_body.setAngularVel(v)
    
    def speed(self):
        """ returns the current velocity """
        return self.velocity().length()
        
    def position(self):
        """ return the current position """
        return self.ode_body.getPosition()
    def setPosition(self,p):
        self.ode_body.setPosition(p)
    
    def altitude(self):
        """ returns the current altitude """
        return self.position().getZ()
    
    def quat(self):
        """ return the current quaternion representation of the attitude """
        return Quat(self.ode_body.getQuaternion())
    
    def _controlRotForce(self,control,axis,coeff,speed,rspeed,max_rspeed):
        """ generic control rotation force
        control - positive or negative amount of elevator/rudder/ailerons
        axis - vector about which the torque is applied
        coeff - the conversion of the amount of the control to a rotational force
        speed - the speed of the plane
        rspeed - the current rotational speed about the axis
        max_rspeed - a cut-off for the rotational speed
        """
        if control * rspeed < max_rspeed:
            return axis * control * coeff * speed
        else:
            return Vec3(0.0,0.0,0.0)
    
    def _rotDamping(self,vector,rotv,damping_factor):
        """ generic damping """
        damp = damping_factor * rotv
        
        # rather than trusting that we have the sign right at any point
        # decide sign of the returned value based on the speed
        if rotv < 0.0:
            return vector * abs(damp)
        else:
            return vector * -abs(damp)
    
    def _forwardAndVelocityVectorForces(self,up,right,norm_v,speed):
        """ calculates torque and force resulting from deviation of the
        velocity vector from the forward vector """
        
        # could do with a better name for this method
        
        # get the projection of the normalised velocity onto the up and
        # right vectors to find relative pitch and heading angles
        p_angle = acos(up.dot(norm_v)) - pi/2
        h_angle = acos(right.dot(norm_v)) - pi/2
        
        torque_p = p_angle*self.pitch_torque_coefficient*speed
        torque_h = h_angle*self.heading_torque_coefficient*speed
        force_p = p_angle*self.pitch_force_coefficient*speed
        force_h = h_angle*self.heading_force_coefficient*speed
        
        return Vec3(-torque_p, 0.0, torque_h), Vec3(-force_p, 0.0, force_h)
    
    def simulationTask(self,task):
        """Update position and velocity based on aerodynamic forces."""
        delta_time = global_clock.getDt()
        self.accumulator += delta_time
        updated = False
        #print self.accumulator, delta_time
        while self.accumulator > self.step_size:
            self.accumulator -= self.step_size
            updated = True
            
            position = self.position()
            velocity = self.velocity()
            speed = velocity.length()
            norm_v = velocity + Vec3(0.0,0.0,0.0)
            norm_v.normalize()
            
            yawv,pitchv,rollv = self.angVelBodyHpr()
            
            quat = self.quat()
            forward = quat.getForward()
            up = quat.getUp()
            right = quat.getRight()
            
            linear_force = self._force(position,velocity,right,up,forward)
            
            self.ode_body.addForce(linear_force)

            # Control forces:
            elevator_af = self._controlRotForce(self.elevator,Vec3(1.0,0.0,0.0),
                                                self.elevator_coefficient,
                                                speed,pitchv,self.terminal_pitch)
            ailerons_af = self._controlRotForce(self.ailerons,Vec3(0.0,1.0,0.0),
                                                self.ailerons_coefficient,
                                                speed,rollv,self.terminal_roll)
            rudder_af = self._controlRotForce(self.rudder,Vec3(0.0,0.0,1.0),
                                                self.rudder_coefficient,
                                                speed,yawv,self.terminal_yaw)

            # Damping forces
            pitch_damping_avf = self._rotDamping(Vec3(1.0,0.0,0.0),pitchv,self.pitch_damping)
            roll_damping_avf = self._rotDamping(Vec3(0.0,1.0,0.0),rollv,self.roll_damping)
            yaw_damping_avf = self._rotDamping(Vec3(0.0,0.0,1.0),yawv,self.yaw_damping)

            self.ode_body.addRelTorque(elevator_af + ailerons_af + rudder_af +
                                     roll_damping_avf + pitch_damping_avf + yaw_damping_avf)

            # Forces to rotate the forward vector towards the velocity vector
            # and vice versa
            fvv_torque, fvv_force = self._forwardAndVelocityVectorForces(up,right,norm_v,speed)
            self.ode_body.addRelTorque(fvv_torque)
            self.ode_body.addForce(fvv_force)

            if position.getZ() < 0:
                position.setZ(0)
                velocity.setZ(0)
                self.setPosition(position)
                self.setVelocity(velocity)
            self.rudder = 0.0
            self.elevator = 0.0
            self.ailerons = 0.0
            self.world.quickStep(self.step_size)
        if updated:
            self.node.setPosQuat(render, self.position(), quat)
        return task.cont

    def destroy():
        """Call this while deactivating physics on a plane."""
        # TODO: clean up stuff
        pass
コード例 #4
0
class AeroplanePhysics(Physical):
    def __init__(self, node):

        Physical.__init__(self)

        self.node = node
        self.thrust = 0.0
        self.loadSpecs()

        # precalculated values for combinations of variables
        self.setCalculationConstants()

        # dynamic variables
        self.acceleration = Vec3(0.0, 0.0, 0.0)
        self.angle_of_attack = 0.0

        # state variables
        self.rudder = 0.0
        self.ailerons = 0.0
        self.elevator = 0.0

        self.ode_body = OdeBody(self.world)
        # positions and orientation are set relative to render
        self.ode_body.setPosition(self.node.getPos(render))
        self.ode_body.setQuaternion(self.node.getQuat(render))

        self.ode_mass = OdeMass()
        self.ode_mass.setBox(self.mass, 1, 1, 1)
        self.ode_body.setMass(self.ode_mass)

        self.accumulator = 0.0
        self.step_size = 0.02
        taskMgr.add(self.simulationTask,
                    "plane physics",
                    sort=-1,
                    taskChain="world")

    def loadSpecs(self):
        """Loads specifications for a plane. Force if already loaded."""

        # TODO (gjmm): these are specifications and should be moved to a file

        self.mass = 1000
        self.max_thrust = 5000.0

        self.wing_area = 48.0  # m^2
        self.wing_span = 24.0  # m

        self.drag_coef_x = 0.9
        self.drag_coef_y = 0.1
        self.drag_coef_z = 0.9
        self.drag_area_x = 30.0
        self.drag_area_y = 2.75
        self.drag_area_z = 50.0
        self.aspect_ratio = self.wing_span * self.wing_span / self.wing_area

        # What the hell is this?! I still don't get it... :-(
        # Does this need to be individual per plane?
        # -Nemesis13
        self.liftvsaoa = ListInterpolator(
            [[radians(-10.0), -0.4], [radians(-8.0), -0.45],
             [radians(15.0), 1.75], [radians(18.0), 1.05]], 0.0, 0.0)
        self.dragvsaoa = ListInterpolator(
            [[radians(-10.0), -0.010], [radians(0.0), 0.006],
             [radians(4.0), 0.005], [radians(8.0), 0.0065],
             [radians(12.0), 0.012], [radians(14.0), 0.020],
             [radians(16.0), 0.028]], 0.03, 0.1)

        self.yaw_damping = -100
        self.pitch_damping = -100
        self.roll_damping = -100

        self.terminal_yaw = 3
        self.terminal_pitch = 3
        self.terminal_roll = 3

        self.rudder_coefficient = 1.0
        self.elevator_coefficient = 4.5
        self.ailerons_coefficient = 5.5

        self.pitch_force_coefficient = 4.0
        self.heading_force_coefficient = 1.0
        self.pitch_torque_coefficient = 0.1
        self.heading_torque_coefficient = 12.0

    def move(self, movement):
        """Plane movement management."""
        if movement == "roll-left":
            self.ailerons = -1.0
        elif movement == "roll-right":
            self.ailerons = 1.0
        elif movement == "pitch-up":
            self.elevator = 1.0
        elif movement == "pitch-down":
            self.elevator = -1.0
        elif movement == "heading-left":
            self.rudder = 1.0
        elif movement == "heading-right":
            self.rudder = -1.0

    def chThrust(self, value):
        delta_time = global_clock.getDt()
        if value == "add" and self.thrust < 1.0:
            self.thrust += 0.01
        elif value == "subtract" and self.thrust > 0.0:
            self.thrust -= 0.01

    def setThrust(self, value):
        if value <= 0:
            self.thrust = 0
        elif value >= 1:
            self.thrust = 1
        else:
            self.thrust = value

    def getThrust(self):
        return self.thrust

    def setCalculationConstants(self):
        """pre-calculate some calculation constants from the
        flight parameters"""
        # density of air: rho = 1.2041 kg m-3
        half_rho = 0.602
        self.lift_factor = half_rho * self.wing_area

        # could modify lift_induced_drag by a factor of 1.05 to 1.15
        self.lift_induced_drag_factor = (-1.0) * self.lift_factor / \
                                        (pi*self.aspect_ratio)
        self.drag_factor_x = (-1.0) * half_rho * self.drag_area_x * \
                                                 self.drag_coef_x
        self.drag_factor_y = (-1.0) * half_rho * self.drag_area_y * \
                                                 self.drag_coef_y
        self.drag_factor_z = (-1.0) * half_rho * self.drag_area_z * \
                                                 self.drag_coef_z

        self.gravity = Vec3(0.0, 0.0, -9.81)
        self.gravityM = self.gravity * self.mass

    def _wingAngleOfAttack(self, v_norm, up):
        """ calculate the angle between the wing and the relative motion of the air """

        #projected_v = v_norm - right * v_norm.dot(right)
        #aoa = atan2(projected_v.dot(-up), projected_v.dot(forward))
        #return aoa

        # strangely enough, the above gets the same result as the below
        # for these vectors it must be calculating the angle in the plane where
        # right is the normal vector

        return v_norm.angleRad(up) - pi / 2.0

    def _lift(self, v_norm, v_squared, right, aoa):
        """return the lift force vector generated by the wings"""
        # lift direction is always perpendicular to the airflow
        lift_vector = right.cross(v_norm)
        return lift_vector * v_squared * self.lift_factor * self.liftvsaoa[aoa]

    def _drag(self, v, v_squared, right, up, forward, aoa):
        """return the drag force"""

        # get the induced drag coefficient
        # Cdi = (Cl*Cl)/(pi*AR*e)

        lift_coef = self.liftvsaoa[aoa]
        ind_drag_coef = lift_coef * lift_coef / (pi * self.aspect_ratio * 1.10)

        # and calculate the drag induced by the creation of lift
        induced_drag = -v * sqrt(v_squared) * self.lift_factor * ind_drag_coef
        #induced_drag = Vec3(0.0,0.0,0.0)
        profile_drag = self._simpleProfileDrag(v, right, up, forward)

        return induced_drag + profile_drag

    def _simpleProfileDrag(self, v, right, up, forward):
        """return the force vector due to the shape of the aircraft"""
        speed_x = right.dot(v)
        speed_y = forward.dot(v)
        speed_z = up.dot(v)

        drag_x = right * speed_x * abs(speed_x) * self.drag_factor_x
        drag_y = forward * speed_y * abs(speed_y) * self.drag_factor_y
        drag_z = up * speed_z * abs(speed_z) * self.drag_factor_z
        return drag_x + drag_y + drag_z

    def _thrust(self, thrust_vector):
        """return the force vector produced by the aircraft engines"""
        return thrust_vector * self.thrust * self.max_thrust

    def _force(self, p, v, right, up, forward):
        """calculate the forces due to the velocity and orientation of the aircraft"""
        v_squared = v.lengthSquared()
        v_norm = v + v.zero()
        v_norm.normalize()

        aoa = self._wingAngleOfAttack(v_norm, up)
        lift = self._lift(v_norm, v_squared, right, aoa)
        drag = self._drag(v, v_squared, right, up, forward, aoa)
        thrust = self._thrust(forward)
        self.angle_of_attack = aoa

        force = lift + drag + self.gravityM + thrust

        # if the plane is on the ground, the ground reacts to the downward force
        # TODO (gjmm): need to modify in order to consider reaction to objects
        #              at different altitudes.
        if p.getZ() == 0.0:
            if force[2] < 0.0:
                force.setZ(0.0)

        return force

    def angleOfAttack(self):
        return self.angle_of_attack

    def gForceTotal(self):
        acc = self.acceleration - self.gravity
        return acc.length() / 9.81

    def gForce(self):
        up = self.node.getQuat().getUp()
        acc = self.acceleration - self.gravity
        gf = acc.dot(up) / 9.81
        return gf

    def lateralG(self):
        right = self.node.getQuat().getRight()
        acc = self.acceleration - self.gravity
        gf = acc.dot(right) / 9.81
        return gf

    def axialG(self):
        forward = self.node.getQuat().getForward()
        acc = self.acceleration - self.gravity
        gf = acc.dot(forward) / 9.81
        return gf

    def velocity(self):
        """ return the current velocity """
        #return self.physics_object.getVelocity()
        return Vec3(self.ode_body.getLinearVel())

    def setVelocity(self, v):
        self.ode_body.setLinearVel(v)

    def angVelVector(self):
        """ return the current angular velocity as a vector """
        return self.ode_body.getAngularVel()

    def angVelBodyHpr(self):
        """ return the heading, pitch and roll values about the body axis """
        angv = self.angVelVector()
        quat = self.quat()
        h = angv.dot(quat.getUp())
        p = angv.dot(quat.getRight())
        r = angv.dot(quat.getForward())
        return h, p, r

    def setAngularVelocity(self, v):
        self.ode_body.setAngularVel(v)

    def speed(self):
        """ returns the current velocity """
        return self.velocity().length()

    def position(self):
        """ return the current position """
        return self.ode_body.getPosition()

    def setPosition(self, p):
        self.ode_body.setPosition(p)

    def altitude(self):
        """ returns the current altitude """
        return self.position().getZ()

    def quat(self):
        """ return the current quaternion representation of the attitude """
        return Quat(self.ode_body.getQuaternion())

    def _controlRotForce(self, control, axis, coeff, speed, rspeed,
                         max_rspeed):
        """ generic control rotation force
        control - positive or negative amount of elevator/rudder/ailerons
        axis - vector about which the torque is applied
        coeff - the conversion of the amount of the control to a rotational force
        speed - the speed of the plane
        rspeed - the current rotational speed about the axis
        max_rspeed - a cut-off for the rotational speed
        """
        if control * rspeed < max_rspeed:
            return axis * control * coeff * speed
        else:
            return Vec3(0.0, 0.0, 0.0)

    def _rotDamping(self, vector, rotv, damping_factor):
        """ generic damping """
        damp = damping_factor * rotv

        # rather than trusting that we have the sign right at any point
        # decide sign of the returned value based on the speed
        if rotv < 0.0:
            return vector * abs(damp)
        else:
            return vector * -abs(damp)

    def _forwardAndVelocityVectorForces(self, up, right, norm_v, speed):
        """ calculates torque and force resulting from deviation of the
        velocity vector from the forward vector """

        # could do with a better name for this method

        # get the projection of the normalised velocity onto the up and
        # right vectors to find relative pitch and heading angles
        p_angle = acos(up.dot(norm_v)) - pi / 2
        h_angle = acos(right.dot(norm_v)) - pi / 2

        torque_p = p_angle * self.pitch_torque_coefficient * speed
        torque_h = h_angle * self.heading_torque_coefficient * speed
        force_p = p_angle * self.pitch_force_coefficient * speed
        force_h = h_angle * self.heading_force_coefficient * speed

        return Vec3(-torque_p, 0.0, torque_h), Vec3(-force_p, 0.0, force_h)

    def simulationTask(self, task):
        """Update position and velocity based on aerodynamic forces."""
        delta_time = global_clock.getDt()
        self.accumulator += delta_time
        updated = False
        #print self.accumulator, delta_time
        while self.accumulator > self.step_size:
            self.accumulator -= self.step_size
            updated = True

            position = self.position()
            velocity = self.velocity()
            speed = velocity.length()
            norm_v = velocity + Vec3(0.0, 0.0, 0.0)
            norm_v.normalize()

            yawv, pitchv, rollv = self.angVelBodyHpr()

            quat = self.quat()
            forward = quat.getForward()
            up = quat.getUp()
            right = quat.getRight()

            linear_force = self._force(position, velocity, right, up, forward)

            self.ode_body.addForce(linear_force)

            # Control forces:
            elevator_af = self._controlRotForce(self.elevator,
                                                Vec3(1.0, 0.0, 0.0),
                                                self.elevator_coefficient,
                                                speed, pitchv,
                                                self.terminal_pitch)
            ailerons_af = self._controlRotForce(self.ailerons,
                                                Vec3(0.0, 1.0, 0.0),
                                                self.ailerons_coefficient,
                                                speed, rollv,
                                                self.terminal_roll)
            rudder_af = self._controlRotForce(self.rudder, Vec3(0.0, 0.0, 1.0),
                                              self.rudder_coefficient, speed,
                                              yawv, self.terminal_yaw)

            # Damping forces
            pitch_damping_avf = self._rotDamping(Vec3(1.0, 0.0, 0.0), pitchv,
                                                 self.pitch_damping)
            roll_damping_avf = self._rotDamping(Vec3(0.0, 1.0, 0.0), rollv,
                                                self.roll_damping)
            yaw_damping_avf = self._rotDamping(Vec3(0.0, 0.0, 1.0), yawv,
                                               self.yaw_damping)

            self.ode_body.addRelTorque(elevator_af + ailerons_af + rudder_af +
                                       roll_damping_avf + pitch_damping_avf +
                                       yaw_damping_avf)

            # Forces to rotate the forward vector towards the velocity vector
            # and vice versa
            fvv_torque, fvv_force = self._forwardAndVelocityVectorForces(
                up, right, norm_v, speed)
            self.ode_body.addRelTorque(fvv_torque)
            self.ode_body.addForce(fvv_force)

            if position.getZ() < 0:
                position.setZ(0)
                velocity.setZ(0)
                self.setPosition(position)
                self.setVelocity(velocity)
            self.rudder = 0.0
            self.elevator = 0.0
            self.ailerons = 0.0
            self.world.quickStep(self.step_size)
        if updated:
            self.node.setPosQuat(render, self.position(), quat)
        return task.cont

    def destroy():
        """Call this while deactivating physics on a plane."""
        # TODO: clean up stuff
        pass
コード例 #5
0
class Character(GameObject):	
	def __init__(self, world):
		GameObject.__init__(self, world)

		# Set the speed parameters
		self.vel = Vec3(0, 0, 0)
		self.strafespeed = 20.0
		self.forwardspeed = 32.0
		self.backspeed = 24.0
		self.jumpspeed = 20
		self.wasJumping = False

		# Set character dimensions
		self.size = (4.0, 3.0, 10.0)
		self.eyeHeight = 9.0
		self.offset = Point3(0, 0, self.eyeHeight - (self.size[2]/2))

		# Create character node
		self.node = base.render.attachNewNode("character")
		self.node.setPos(0, 0, self.eyeHeight)
		self.node.lookAt(0, 1, self.eyeHeight)

		# Create physics representation
		self.mass = OdeMass()
		self.mass.setBox(50, *self.size)
		self.body = OdeBody(world.world)
		self.body.setMass(self.mass)
		self.updatePhysicsFromPos()
		self.body.setData(self)
		self.geom = OdeBoxGeom(world.space, Vec3(*self.size))
		self.geom.setBody(self.body)
		world.space.setSurfaceType(self.geom, world.surfaces["box"])

		# Adjust collision bitmasks.
		self.geom.setCategoryBits(GameObject.bitmaskCharacter)
		self.geom.setCollideBits(GameObject.bitmaskAll & ~GameObject.bitmaskBullet)

		# Setup event handling
		self.keys = [0, 0, 0, 0, 0]
		self.setupKeys()
		base.taskMgr.add(self.moveTask, "character-move")

		# Create footsteps sound
		self.footstepsSound = base.loader.loadSfx("media/footsteps.wav")
		self.footstepsSound.setLoop(1)
		self.footsteps = SoundWrapper(self.footstepsSound)

		# Create other sounds.
		self.jumpSound = base.loader.loadSfx("media/jump_start.wav")
		self.landSound = base.loader.loadSfx("media/jump_fall.wav")

	def updatePosFromPhysics(self):
		self.node.setPos(render, self.body.getPosition() + self.offset)
		self.body.setAngularVel(0, 0, 0)

	def updatePhysicsFromPos(self):
		self.body.setPosition(self.node.getPos() - self.offset)
		self.body.setQuaternion(self.node.getQuat())

	def getDir(self):
		return base.render.getRelativeVector(self.node, (0, 1, 0))

	def moveTo(self, pos):
		self.node.setPos(pos)
		self.updatePhysicsFromPos()

	def recoil(self, mag):
		vel = self.body.getLinearVel()
		diff = self.getDir() * mag
		
		# Limit recoil
		if sign(vel[0]) != sign(diff[0]) and abs(vel[0]) > 15: diff[0] = 0
		if sign(vel[1]) != sign(diff[1]) and abs(vel[1]) > 15: diff[1] = 0
		diff[2] = 0

		self.body.setLinearVel(vel - diff)

	def jump(self):
		vel = self.body.getLinearVel()
		self.body.setLinearVel(vel[0], vel[1], vel[2] + self.jumpspeed)
		self.jumpSound.play()

	def isJumping(self):
		return abs(self.body.getLinearVel()[2]) > 0.05

	def setKey(self, button, value):
		self.keys[button] = value

	def setupKeys(self):
		base.accept("w", self.setKey, [0, 1]) #forward
		base.accept("s", self.setKey, [1, 1]) #back
		base.accept("a", self.setKey, [2, 1]) #strafe left
		base.accept("d", self.setKey, [3, 1]) #strafe right
		base.accept("space", self.setKey, [4, 1]) #jump
		base.accept("w-up", self.setKey, [0, 0])
		base.accept("s-up", self.setKey, [1, 0])
		base.accept("a-up", self.setKey, [2, 0])
		base.accept("d-up", self.setKey, [3, 0])
		base.accept("space-up", self.setKey, [4, 0])

	def moveTask(self, task):
		# Initialize variables
		elapsed = globalClock.getDt()
		x = 0.0
		y = 0.0
		jumping = self.isJumping()

		# Calculate movement vector.
		if self.keys[0] != 0:
			y = self.forwardspeed
		if self.keys[1] != 0:
			y = -self.backspeed
		if self.keys[2] != 0:
			x = -self.strafespeed
		if self.keys[3] != 0:
			x = self.strafespeed
		self.vel = Vec3(x, y, 0)
		self.vel *= elapsed

		# Move the character along the ground.
		hpr = self.node.getHpr()
		self.node.setP(0)
		self.node.setR(0)
		self.node.setPos(self.node, self.vel)
		self.updatePhysicsFromPos()
		self.node.setHpr(hpr)

		# Play landing sound (if applicable).
		if self.wasJumping and not jumping:
			pass #Landing detection not working.
			#self.landSound.play()

		# Jump (if applicable).
		if self.keys[4] and not jumping:
			self.jump()
		self.wasJumping = jumping

		# Play footsteps if walking.
		if not jumping and (self.keys[0] != 0 or self.keys[1] != 0 or self.keys[2] != 0 or self.keys[3] != 0):
			self.footsteps.resume()
		else:
			self.footsteps.pause()

		return task.cont
コード例 #6
0
ファイル: player.py プロジェクト: Katrin92/gyro
class Player:

    def __init__(self, level):
        self._init_model()
        self._init_controls()
        self.level = level

    def _init_model(self):
        self.model = loader.loadModel("models/gyro")
        self.model.reparentTo(render)
        self.model.setPos(0, 0, 2)
        self.model.setHpr(0, 0, 0)
        self.model.setColor(0.1, 0.7, 0.7, 1)
        self.model.setTexture(loader.loadTexture('textures/texture.png'))

    def _init_controls(self):
        self.controls = Controls()

    def enable_physics(self, physics):
        self.body = OdeBody(physics.world)
        self.initial_position = self.model.getPos(render)
        self.initial_quaternion = self.model.getQuat(render)
        self.initial_spin_velocity = 50
        self.reset()

        mass = OdeMass()
        mass.setCylinder(10, 2, 1.2, 0.2)
        self.body.setMass(mass)

        modelTrimesh = OdeTriMeshData(loader.loadModel("models/gyro-low"), True)
        self.geom = OdeTriMeshGeom(physics.space, modelTrimesh)
        self.geom.setBody(self.body)

        physics.bodymodels[self.body] = self.model

        physics.actions.append(self._player_controls)
        self.exponent = 1000 * physics.step_size


    def _player_controls(self):

        avel = self.body.getAngularVel()

        on_plate = False
        accelerate = False

        for level_object in self.level.objects:
            collide = OdeUtil.collide(level_object.geom, self.geom)
            if collide:
                on_plate = True
                if avel.z < self.initial_spin_velocity and \
                   isinstance(level_object, Accelerator):
                    accelerate = level_object.player_interact(self)
                break

        if accelerate:
            avel.z += self.exponent / 200.0
            self.factor = 0

        self.calculate_factor(avel.z)

        if self.factor > 0.99:
            return

        f = self.factor**self.exponent

        if on_plate:
            if self.controls.jump:
                vel = self.body.getLinearVel()
                self.body.setLinearVel(vel.x, vel.y, vel.z + 5)
            force = 350
        else:
            force = 25

        self.controls.jump = False

        self.body.addForce(Mat3.rotateMat(self.controls.view_rotation).xform(
                           (self.controls.y*force,
                            -0.8*self.controls.x*force,
                            0)))

        hpr = self.model.getHpr()
        self.model.setHpr(hpr.x, f*hpr.y, f*hpr.z)
        self.body.setQuaternion(self.model.getQuat(render))

        self.body.setAngularVel(f*avel.x,
                                f*avel.y,
                                avel.z)

    def calculate_factor(self, spin_velocity):
        self.factor = max(self.factor, (1/(abs(spin_velocity/500.0)+1)))
        self.health = max(0, round((0.99-self.factor)*1000,1))

    def reset(self):
        self.body.setPosition(self.initial_position)
        self.body.setQuaternion(self.initial_quaternion)
        self.body.setLinearVel(0, 0, 0)
        self.body.setAngularVel(0, 0, self.initial_spin_velocity)
        self.factor = 0
        self.calculate_factor(self.initial_spin_velocity)
コード例 #7
0
class Character(GameObject):
    def __init__(self, world):
        GameObject.__init__(self, world)

        # Set the speed parameters
        self.vel = Vec3(0, 0, 0)
        self.strafespeed = 20.0
        self.forwardspeed = 32.0
        self.backspeed = 24.0
        self.jumpspeed = 20
        self.wasJumping = False

        # Set character dimensions
        self.size = (4.0, 3.0, 10.0)
        self.eyeHeight = 9.0
        self.offset = Point3(0, 0, self.eyeHeight - (self.size[2] / 2))

        # Create character node
        self.node = base.render.attachNewNode("character")
        self.node.setPos(0, 0, self.eyeHeight)
        self.node.lookAt(0, 1, self.eyeHeight)

        # Create physics representation
        self.mass = OdeMass()
        self.mass.setBox(50, *self.size)
        self.body = OdeBody(world.world)
        self.body.setMass(self.mass)
        self.updatePhysicsFromPos()
        self.body.setData(self)
        self.geom = OdeBoxGeom(world.space, Vec3(*self.size))
        self.geom.setBody(self.body)
        world.space.setSurfaceType(self.geom, world.surfaces["box"])

        # Adjust collision bitmasks.
        self.geom.setCategoryBits(GameObject.bitmaskCharacter)
        self.geom.setCollideBits(GameObject.bitmaskAll & ~GameObject.bitmaskBullet)

        # Setup event handling
        self.keys = [0, 0, 0, 0, 0]
        self.setupKeys()
        base.taskMgr.add(self.moveTask, "character-move")

        # Create footsteps sound
        self.footstepsSound = base.loader.loadSfx("media/footsteps.wav")
        self.footstepsSound.setLoop(1)
        self.footsteps = SoundWrapper(self.footstepsSound)

        # Create other sounds.
        self.jumpSound = base.loader.loadSfx("media/jump_start.wav")
        self.landSound = base.loader.loadSfx("media/jump_fall.wav")

    def updatePosFromPhysics(self):
        self.node.setPos(render, self.body.getPosition() + self.offset)
        self.body.setAngularVel(0, 0, 0)

    def updatePhysicsFromPos(self):
        self.body.setPosition(self.node.getPos() - self.offset)
        self.body.setQuaternion(self.node.getQuat())

    def getDir(self):
        return base.render.getRelativeVector(self.node, (0, 1, 0))

    def moveTo(self, pos):
        self.node.setPos(pos)
        self.updatePhysicsFromPos()

    def recoil(self, mag):
        vel = self.body.getLinearVel()
        diff = self.getDir() * mag

        # Limit recoil
        if sign(vel[0]) != sign(diff[0]) and abs(vel[0]) > 15:
            diff[0] = 0
        if sign(vel[1]) != sign(diff[1]) and abs(vel[1]) > 15:
            diff[1] = 0
        diff[2] = 0

        self.body.setLinearVel(vel - diff)

    def jump(self):
        vel = self.body.getLinearVel()
        self.body.setLinearVel(vel[0], vel[1], vel[2] + self.jumpspeed)
        self.jumpSound.play()

    def isJumping(self):
        return abs(self.body.getLinearVel()[2]) > 0.05

    def setKey(self, button, value):
        self.keys[button] = value

    def setupKeys(self):
        base.accept("w", self.setKey, [0, 1])  # forward
        base.accept("s", self.setKey, [1, 1])  # back
        base.accept("a", self.setKey, [2, 1])  # strafe left
        base.accept("d", self.setKey, [3, 1])  # strafe right
        base.accept("space", self.setKey, [4, 1])  # jump
        base.accept("w-up", self.setKey, [0, 0])
        base.accept("s-up", self.setKey, [1, 0])
        base.accept("a-up", self.setKey, [2, 0])
        base.accept("d-up", self.setKey, [3, 0])
        base.accept("space-up", self.setKey, [4, 0])

    def moveTask(self, task):
        # Initialize variables
        elapsed = globalClock.getDt()
        x = 0.0
        y = 0.0
        jumping = self.isJumping()

        # Calculate movement vector.
        if self.keys[0] != 0:
            y = self.forwardspeed
        if self.keys[1] != 0:
            y = -self.backspeed
        if self.keys[2] != 0:
            x = -self.strafespeed
        if self.keys[3] != 0:
            x = self.strafespeed
        self.vel = Vec3(x, y, 0)
        self.vel *= elapsed

        # Move the character along the ground.
        hpr = self.node.getHpr()
        self.node.setP(0)
        self.node.setR(0)
        self.node.setPos(self.node, self.vel)
        self.updatePhysicsFromPos()
        self.node.setHpr(hpr)

        # Play landing sound (if applicable).
        if self.wasJumping and not jumping:
            pass  # Landing detection not working.
            # self.landSound.play()

            # Jump (if applicable).
        if self.keys[4] and not jumping:
            self.jump()
        self.wasJumping = jumping

        # Play footsteps if walking.
        if not jumping and (self.keys[0] != 0 or self.keys[1] != 0 or self.keys[2] != 0 or self.keys[3] != 0):
            self.footsteps.resume()
        else:
            self.footsteps.pause()

        return task.cont