コード例 #1
0
class TestSeriesAggregate:
    def test_transform(self, string_series):
        # transforming functions

        with np.errstate(all="ignore"):

            f_sqrt = np.sqrt(string_series)
            f_abs = np.abs(string_series)

            # ufunc
            result = string_series.apply(np.sqrt)
            expected = f_sqrt.copy()
            tm.assert_series_equal(result, expected)

            # list-like
            result = string_series.apply([np.sqrt])
            expected = f_sqrt.to_frame().copy()
            expected.columns = ["sqrt"]
            tm.assert_frame_equal(result, expected)

            result = string_series.apply(["sqrt"])
            tm.assert_frame_equal(result, expected)

            # multiple items in list
            # these are in the order as if we are applying both functions per
            # series and then concatting
            expected = pd.concat([f_sqrt, f_abs], axis=1)
            expected.columns = ["sqrt", "absolute"]
            result = string_series.apply([np.sqrt, np.abs])
            tm.assert_frame_equal(result, expected)

            # dict, provide renaming
            expected = pd.concat([f_sqrt, f_abs], axis=1)
            expected.columns = ["foo", "bar"]
            expected = expected.unstack().rename("series")

            result = string_series.apply({"foo": np.sqrt, "bar": np.abs})
            tm.assert_series_equal(result.reindex_like(expected), expected)

    def test_transform_and_agg_error(self, string_series):
        # we are trying to transform with an aggregator
        msg = "cannot combine transform and aggregation"
        with pytest.raises(ValueError, match=msg):
            with np.errstate(all="ignore"):
                string_series.agg(["sqrt", "max"])

        msg = "cannot perform both aggregation and transformation"
        with pytest.raises(ValueError, match=msg):
            with np.errstate(all="ignore"):
                string_series.agg({"foo": np.sqrt, "bar": "sum"})

    def test_demo(self):
        # demonstration tests
        s = Series(range(6), dtype="int64", name="series")

        result = s.agg(["min", "max"])
        expected = Series([0, 5], index=["min", "max"], name="series")
        tm.assert_series_equal(result, expected)

        result = s.agg({"foo": "min"})
        expected = Series([0], index=["foo"], name="series")
        tm.assert_series_equal(result, expected)

        # nested renaming
        msg = "nested renamer is not supported"
        with pytest.raises(SpecificationError, match=msg):
            s.agg({"foo": ["min", "max"]})

    def test_multiple_aggregators_with_dict_api(self):

        s = Series(range(6), dtype="int64", name="series")
        # nested renaming
        msg = "nested renamer is not supported"
        with pytest.raises(SpecificationError, match=msg):
            s.agg({"foo": ["min", "max"], "bar": ["sum", "mean"]})

    def test_agg_apply_evaluate_lambdas_the_same(self, string_series):
        # test that we are evaluating row-by-row first
        # before vectorized evaluation
        result = string_series.apply(lambda x: str(x))
        expected = string_series.agg(lambda x: str(x))
        tm.assert_series_equal(result, expected)

        result = string_series.apply(str)
        expected = string_series.agg(str)
        tm.assert_series_equal(result, expected)

    def test_with_nested_series(self, datetime_series):
        # GH 2316
        # .agg with a reducer and a transform, what to do
        result = datetime_series.apply(
            lambda x: Series([x, x**2], index=["x", "x^2"]))
        expected = DataFrame({"x": datetime_series, "x^2": datetime_series**2})
        tm.assert_frame_equal(result, expected)

        result = datetime_series.agg(
            lambda x: Series([x, x**2], index=["x", "x^2"]))
        tm.assert_frame_equal(result, expected)

    def test_replicate_describe(self, string_series):
        # this also tests a result set that is all scalars
        expected = string_series.describe()
        result = string_series.apply({
            "count": "count",
            "mean": "mean",
            "std": "std",
            "min": "min",
            "25%": lambda x: x.quantile(0.25),
            "50%": "median",
            "75%": lambda x: x.quantile(0.75),
            "max": "max",
        })
        tm.assert_series_equal(result, expected)

    def test_reduce(self, string_series):
        # reductions with named functions
        result = string_series.agg(["sum", "mean"])
        expected = Series(
            [string_series.sum(), string_series.mean()],
            ["sum", "mean"],
            name=string_series.name,
        )
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize("how", ["agg", "apply"])
    def test_non_callable_aggregates(self, how):
        # test agg using non-callable series attributes
        # GH 39116 - expand to apply
        s = Series([1, 2, None])

        # Calling agg w/ just a string arg same as calling s.arg
        result = getattr(s, how)("size")
        expected = s.size
        assert result == expected

        # test when mixed w/ callable reducers
        result = getattr(s, how)(["size", "count", "mean"])
        expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "series, func, expected",
        chain(
            tm.get_cython_table_params(
                Series(dtype=np.float64),
                [
                    ("sum", 0),
                    ("max", np.nan),
                    ("min", np.nan),
                    ("all", True),
                    ("any", False),
                    ("mean", np.nan),
                    ("prod", 1),
                    ("std", np.nan),
                    ("var", np.nan),
                    ("median", np.nan),
                ],
            ),
            tm.get_cython_table_params(
                Series([np.nan, 1, 2, 3]),
                [
                    ("sum", 6),
                    ("max", 3),
                    ("min", 1),
                    ("all", True),
                    ("any", True),
                    ("mean", 2),
                    ("prod", 6),
                    ("std", 1),
                    ("var", 1),
                    ("median", 2),
                ],
            ),
            tm.get_cython_table_params(
                Series("a b c".split()),
                [
                    ("sum", "abc"),
                    ("max", "c"),
                    ("min", "a"),
                    ("all", "c"),  # see GH12863
                    ("any", "a"),
                ],
            ),
        ),
    )
    def test_agg_cython_table(self, series, func, expected):
        # GH21224
        # test reducing functions in
        # pandas.core.base.SelectionMixin._cython_table
        result = series.agg(func)
        if is_number(expected):
            assert np.isclose(result, expected, equal_nan=True)
        else:
            assert result == expected

    @pytest.mark.parametrize(
        "series, func, expected",
        chain(
            tm.get_cython_table_params(
                Series(dtype=np.float64),
                [
                    ("cumprod", Series([], Index([]), dtype=np.float64)),
                    ("cumsum", Series([], Index([]), dtype=np.float64)),
                ],
            ),
            tm.get_cython_table_params(
                Series([np.nan, 1, 2, 3]),
                [
                    ("cumprod", Series([np.nan, 1, 2, 6])),
                    ("cumsum", Series([np.nan, 1, 3, 6])),
                ],
            ),
            tm.get_cython_table_params(Series(
                "a b c".split()), [("cumsum", Series(["a", "ab", "abc"]))]),
        ),
    )
    def test_agg_cython_table_transform(self, series, func, expected):
        # GH21224
        # test transforming functions in
        # pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
        result = series.agg(func)
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "series, func, expected",
        chain(
            tm.get_cython_table_params(
                Series("a b c".split()),
                [
                    ("mean", TypeError),  # mean raises TypeError
                    ("prod", TypeError),
                    ("std", TypeError),
                    ("var", TypeError),
                    ("median", TypeError),
                    ("cumprod", TypeError),
                ],
            )),
    )
    def test_agg_cython_table_raises(self, series, func, expected):
        # GH21224
        msg = r"[Cc]ould not convert|can't multiply sequence by non-int of type"
        with pytest.raises(expected, match=msg):
            # e.g. Series('a b'.split()).cumprod() will raise
            series.agg(func)

    def test_series_apply_no_suffix_index(self):
        # GH36189
        s = Series([4] * 3)
        result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()])
        expected = Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"])

        tm.assert_series_equal(result, expected)
コード例 #2
0
        return row

    def transform2(row):
        if notna(row["C"]) and row["C"].startswith("shin") and row["A"] == "foo":
            row["D"] = 7
        return row

    msg = "'float' object has no attribute 'startswith'"
    with pytest.raises(AttributeError, match=msg):
        data.apply(transform, axis=1)


@pytest.mark.parametrize(
    "df, func, expected",
    tm.get_cython_table_params(
        DataFrame([["a", "b"], ["b", "a"]]), [["cumprod", TypeError]]
    ),
)
def test_agg_cython_table_raises_frame(df, func, expected, axis):
    # GH 21224
    msg = "can't multiply sequence by non-int of type 'str'"
    with pytest.raises(expected, match=msg):
        df.agg(func, axis=axis)


@pytest.mark.parametrize(
    "series, func, expected",
    chain(
        tm.get_cython_table_params(
            Series("a b c".split()),
            [
コード例 #3
0
ファイル: test_str.py プロジェクト: invokerzccc/pandas
        result = getattr(float_frame, how)(op)
        expected = getattr(np, op)(float_frame)
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "series, func, expected",
    chain(
        tm.get_cython_table_params(
            Series(dtype=np.float64),
            [
                ("sum", 0),
                ("max", np.nan),
                ("min", np.nan),
                ("all", True),
                ("any", False),
                ("mean", np.nan),
                ("prod", 1),
                ("std", np.nan),
                ("var", np.nan),
                ("median", np.nan),
            ],
        ),
        tm.get_cython_table_params(
            Series([np.nan, 1, 2, 3]),
            [
                ("sum", 6),
                ("max", 3),
                ("min", 1),
                ("all", True),
                ("any", True),
コード例 #4
0
ファイル: test_frame_apply.py プロジェクト: yaolan4/pandas
    result = df.agg([func])
    expected = expected.to_frame("func").T
    tm.assert_frame_equal(result, expected)


@pytest.mark.parametrize(
    "df, func, expected",
    chain(
        tm.get_cython_table_params(
            DataFrame(),
            [
                ("sum", Series(dtype="float64")),
                ("max", Series(dtype="float64")),
                ("min", Series(dtype="float64")),
                ("all", Series(dtype=bool)),
                ("any", Series(dtype=bool)),
                ("mean", Series(dtype="float64")),
                ("prod", Series(dtype="float64")),
                ("std", Series(dtype="float64")),
                ("var", Series(dtype="float64")),
                ("median", Series(dtype="float64")),
            ],
        ),
        tm.get_cython_table_params(
            DataFrame([[np.nan, 1], [1, 2]]),
            [
                ("sum", Series([1.0, 3])),
                ("max", Series([1.0, 2])),
                ("min", Series([1.0, 1])),
                ("all", Series([True, True])),
                ("any", Series([True, True])),
コード例 #5
0
    result = getattr(s, how)(["size", "count", "mean"])
    expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "series, func, expected",
    chain(
        tm.get_cython_table_params(
            Series(dtype=np.float64),
            [
                ("sum", 0),
                ("max", np.nan),
                ("min", np.nan),
                ("all", True),
                ("any", False),
                ("mean", np.nan),
                ("prod", 1),
                ("std", np.nan),
                ("var", np.nan),
                ("median", np.nan),
            ],
        ),
        tm.get_cython_table_params(
            Series([np.nan, 1, 2, 3]),
            [
                ("sum", 6),
                ("max", 3),
                ("min", 1),
                ("all", True),
                ("any", True),
コード例 #6
0
        return row

    def transform2(row):
        if notna(row["C"]) and row["C"].startswith(
                "shin") and row["A"] == "foo":
            row["D"] = 7
        return row

    msg = "'float' object has no attribute 'startswith'"
    with pytest.raises(AttributeError, match=msg):
        data.apply(transform, axis=1)


@pytest.mark.parametrize(
    "df, func, expected",
    tm.get_cython_table_params(DataFrame([["a", "b"], ["b", "a"]]),
                               [["cumprod", TypeError]]),
)
def test_agg_cython_table_raises(df, func, expected, axis):
    # GH 21224
    msg = "can't multiply sequence by non-int of type 'str'"
    with pytest.raises(expected, match=msg):
        df.agg(func, axis=axis)


def test_transform_none_to_type():
    # GH#34377
    df = DataFrame({"a": [None]})
    msg = "Transform function failed"
    with pytest.raises(ValueError, match=msg):
        df.transform({"a": int})
コード例 #7
0
ファイル: test_apply.py プロジェクト: CSCD01/pandas-team24
class TestDataFrameAggregate:
    def test_agg_transform(self, axis, float_frame):
        other_axis = 1 if axis in {0, "index"} else 0

        with np.errstate(all="ignore"):

            f_abs = np.abs(float_frame)
            f_sqrt = np.sqrt(float_frame)

            # ufunc
            result = float_frame.transform(np.sqrt, axis=axis)
            expected = f_sqrt.copy()
            tm.assert_frame_equal(result, expected)

            result = float_frame.apply(np.sqrt, axis=axis)
            tm.assert_frame_equal(result, expected)

            result = float_frame.transform(np.sqrt, axis=axis)
            tm.assert_frame_equal(result, expected)

            # list-like
            result = float_frame.apply([np.sqrt], axis=axis)
            expected = f_sqrt.copy()
            if axis in {0, "index"}:
                expected.columns = pd.MultiIndex.from_product(
                    [float_frame.columns, ["sqrt"]])
            else:
                expected.index = pd.MultiIndex.from_product(
                    [float_frame.index, ["sqrt"]])
            tm.assert_frame_equal(result, expected)

            result = float_frame.transform([np.sqrt], axis=axis)
            tm.assert_frame_equal(result, expected)

            # multiple items in list
            # these are in the order as if we are applying both
            # functions per series and then concatting
            result = float_frame.apply([np.abs, np.sqrt], axis=axis)
            expected = zip_frames([f_abs, f_sqrt], axis=other_axis)
            if axis in {0, "index"}:
                expected.columns = pd.MultiIndex.from_product(
                    [float_frame.columns, ["absolute", "sqrt"]])
            else:
                expected.index = pd.MultiIndex.from_product(
                    [float_frame.index, ["absolute", "sqrt"]])
            tm.assert_frame_equal(result, expected)

            result = float_frame.transform([np.abs, "sqrt"], axis=axis)
            tm.assert_frame_equal(result, expected)

    def test_transform_and_agg_err(self, axis, float_frame):
        # cannot both transform and agg
        msg = "transforms cannot produce aggregated results"
        with pytest.raises(ValueError, match=msg):
            float_frame.transform(["max", "min"], axis=axis)

        msg = "cannot combine transform and aggregation operations"
        with pytest.raises(ValueError, match=msg):
            with np.errstate(all="ignore"):
                float_frame.agg(["max", "sqrt"], axis=axis)

        with pytest.raises(ValueError, match=msg):
            with np.errstate(all="ignore"):
                float_frame.transform(["max", "sqrt"], axis=axis)

        df = pd.DataFrame({"A": range(5), "B": 5})

        def f():
            with np.errstate(all="ignore"):
                df.agg({"A": ["abs", "sum"], "B": ["mean", "max"]}, axis=axis)

    @pytest.mark.parametrize("method",
                             ["abs", "shift", "pct_change", "cumsum", "rank"])
    def test_transform_method_name(self, method):
        # GH 19760
        df = pd.DataFrame({"A": [-1, 2]})
        result = df.transform(method)
        expected = operator.methodcaller(method)(df)
        tm.assert_frame_equal(result, expected)

    def test_demo(self):
        # demonstration tests
        df = pd.DataFrame({"A": range(5), "B": 5})

        result = df.agg(["min", "max"])
        expected = DataFrame({
            "A": [0, 4],
            "B": [5, 5]
        },
                             columns=["A", "B"],
                             index=["min", "max"])
        tm.assert_frame_equal(result, expected)

        result = df.agg({"A": ["min", "max"], "B": ["sum", "max"]})
        expected = DataFrame(
            {
                "A": [4.0, 0.0, np.nan],
                "B": [5.0, np.nan, 25.0]
            },
            columns=["A", "B"],
            index=["max", "min", "sum"],
        )
        tm.assert_frame_equal(result.reindex_like(expected), expected)

    def test_agg_multiple_mixed_no_warning(self):
        # GH 20909
        mdf = pd.DataFrame({
            "A": [1, 2, 3],
            "B": [1.0, 2.0, 3.0],
            "C": ["foo", "bar", "baz"],
            "D": pd.date_range("20130101", periods=3),
        })
        expected = pd.DataFrame(
            {
                "A": [1, 6],
                "B": [1.0, 6.0],
                "C": ["bar", "foobarbaz"],
                "D": [pd.Timestamp("2013-01-01"), pd.NaT],
            },
            index=["min", "sum"],
        )
        # sorted index
        with tm.assert_produces_warning(None):
            result = mdf.agg(["min", "sum"])

        tm.assert_frame_equal(result, expected)

        with tm.assert_produces_warning(None):
            result = mdf[["D", "C", "B", "A"]].agg(["sum", "min"])

        # For backwards compatibility, the result's index is
        # still sorted by function name, so it's ['min', 'sum']
        # not ['sum', 'min'].
        expected = expected[["D", "C", "B", "A"]]
        tm.assert_frame_equal(result, expected)

    def test_agg_dict_nested_renaming_depr(self):

        df = pd.DataFrame({"A": range(5), "B": 5})

        # nested renaming
        msg = r"nested renamer is not supported"
        with pytest.raises(SpecificationError, match=msg):
            df.agg({"A": {"foo": "min"}, "B": {"bar": "max"}})

    def test_agg_reduce(self, axis, float_frame):
        other_axis = 1 if axis in {0, "index"} else 0
        name1, name2 = float_frame.axes[other_axis].unique()[:2].sort_values()

        # all reducers
        expected = pd.concat(
            [
                float_frame.mean(axis=axis),
                float_frame.max(axis=axis),
                float_frame.sum(axis=axis),
            ],
            axis=1,
        )
        expected.columns = ["mean", "max", "sum"]
        expected = expected.T if axis in {0, "index"} else expected

        result = float_frame.agg(["mean", "max", "sum"], axis=axis)
        tm.assert_frame_equal(result, expected)

        # dict input with scalars
        func = OrderedDict([(name1, "mean"), (name2, "sum")])
        result = float_frame.agg(func, axis=axis)
        expected = Series(
            [
                float_frame.loc(other_axis)[name1].mean(),
                float_frame.loc(other_axis)[name2].sum(),
            ],
            index=[name1, name2],
        )
        tm.assert_series_equal(result, expected)

        # dict input with lists
        func = OrderedDict([(name1, ["mean"]), (name2, ["sum"])])
        result = float_frame.agg(func, axis=axis)
        expected = DataFrame({
            name1:
            Series([float_frame.loc(other_axis)[name1].mean()],
                   index=["mean"]),
            name2:
            Series([float_frame.loc(other_axis)[name2].sum()], index=["sum"]),
        })
        expected = expected.T if axis in {1, "columns"} else expected
        tm.assert_frame_equal(result, expected)

        # dict input with lists with multiple
        func = OrderedDict([(name1, ["mean", "sum"]), (name2, ["sum", "max"])])
        result = float_frame.agg(func, axis=axis)
        expected = DataFrame(
            OrderedDict([
                (
                    name1,
                    Series(
                        [
                            float_frame.loc(other_axis)[name1].mean(),
                            float_frame.loc(other_axis)[name1].sum(),
                        ],
                        index=["mean", "sum"],
                    ),
                ),
                (
                    name2,
                    Series(
                        [
                            float_frame.loc(other_axis)[name2].sum(),
                            float_frame.loc(other_axis)[name2].max(),
                        ],
                        index=["sum", "max"],
                    ),
                ),
            ]))
        expected = expected.T if axis in {1, "columns"} else expected
        tm.assert_frame_equal(result, expected)

    def test_nuiscance_columns(self):

        # GH 15015
        df = DataFrame({
            "A": [1, 2, 3],
            "B": [1.0, 2.0, 3.0],
            "C": ["foo", "bar", "baz"],
            "D": pd.date_range("20130101", periods=3),
        })

        result = df.agg("min")
        expected = Series(
            [1, 1.0, "bar", pd.Timestamp("20130101")], index=df.columns)
        tm.assert_series_equal(result, expected)

        result = df.agg(["min"])
        expected = DataFrame(
            [[1, 1.0, "bar", pd.Timestamp("20130101")]],
            index=["min"],
            columns=df.columns,
        )
        tm.assert_frame_equal(result, expected)

        result = df.agg("sum")
        expected = Series([6, 6.0, "foobarbaz"], index=["A", "B", "C"])
        tm.assert_series_equal(result, expected)

        result = df.agg(["sum"])
        expected = DataFrame([[6, 6.0, "foobarbaz"]],
                             index=["sum"],
                             columns=["A", "B", "C"])
        tm.assert_frame_equal(result, expected)

    def test_non_callable_aggregates(self):

        # GH 16405
        # 'size' is a property of frame/series
        # validate that this is working
        df = DataFrame({
            "A": [None, 2, 3],
            "B": [1.0, np.nan, 3.0],
            "C": ["foo", None, "bar"]
        })

        # Function aggregate
        result = df.agg({"A": "count"})
        expected = Series({"A": 2})

        tm.assert_series_equal(result, expected)

        # Non-function aggregate
        result = df.agg({"A": "size"})
        expected = Series({"A": 3})

        tm.assert_series_equal(result, expected)

        # Mix function and non-function aggs
        result1 = df.agg(["count", "size"])
        result2 = df.agg({
            "A": ["count", "size"],
            "B": ["count", "size"],
            "C": ["count", "size"]
        })
        expected = pd.DataFrame({
            "A": {
                "count": 2,
                "size": 3
            },
            "B": {
                "count": 2,
                "size": 3
            },
            "C": {
                "count": 2,
                "size": 3
            },
        })

        tm.assert_frame_equal(result1, result2, check_like=True)
        tm.assert_frame_equal(result2, expected, check_like=True)

        # Just functional string arg is same as calling df.arg()
        result = df.agg("count")
        expected = df.count()

        tm.assert_series_equal(result, expected)

        # Just a string attribute arg same as calling df.arg
        result = df.agg("size")
        expected = df.size

        assert result == expected

    def test_agg_listlike_result(self):
        # GH-29587 user defined function returning list-likes
        df = DataFrame({
            "A": [2, 2, 3],
            "B": [1.5, np.nan, 1.5],
            "C": ["foo", None, "bar"]
        })

        def func(group_col):
            return list(group_col.dropna().unique())

        result = df.agg(func)
        expected = pd.Series([[2, 3], [1.5], ["foo", "bar"]],
                             index=["A", "B", "C"])
        tm.assert_series_equal(result, expected)

        result = df.agg([func])
        expected = expected.to_frame("func").T
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "df, func, expected",
        chain(
            tm.get_cython_table_params(
                DataFrame(),
                [
                    ("sum", Series(dtype="float64")),
                    ("max", Series(dtype="float64")),
                    ("min", Series(dtype="float64")),
                    ("all", Series(dtype=bool)),
                    ("any", Series(dtype=bool)),
                    ("mean", Series(dtype="float64")),
                    ("prod", Series(dtype="float64")),
                    ("std", Series(dtype="float64")),
                    ("var", Series(dtype="float64")),
                    ("median", Series(dtype="float64")),
                ],
            ),
            tm.get_cython_table_params(
                DataFrame([[np.nan, 1], [1, 2]]),
                [
                    ("sum", Series([1.0, 3])),
                    ("max", Series([1.0, 2])),
                    ("min", Series([1.0, 1])),
                    ("all", Series([True, True])),
                    ("any", Series([True, True])),
                    ("mean", Series([1, 1.5])),
                    ("prod", Series([1.0, 2])),
                    ("std", Series([np.nan, 0.707107])),
                    ("var", Series([np.nan, 0.5])),
                    ("median", Series([1, 1.5])),
                ],
            ),
        ),
    )
    def test_agg_cython_table(self, df, func, expected, axis):
        # GH 21224
        # test reducing functions in
        # pandas.core.base.SelectionMixin._cython_table
        result = df.agg(func, axis=axis)
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "df, func, expected",
        chain(
            tm.get_cython_table_params(DataFrame(), [("cumprod", DataFrame()),
                                                     ("cumsum", DataFrame())]),
            tm.get_cython_table_params(
                DataFrame([[np.nan, 1], [1, 2]]),
                [
                    ("cumprod", DataFrame([[np.nan, 1], [1, 2]])),
                    ("cumsum", DataFrame([[np.nan, 1], [1, 3]])),
                ],
            ),
        ),
    )
    def test_agg_cython_table_transform(self, df, func, expected, axis):
        # GH 21224
        # test transforming functions in
        # pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)
        if axis == "columns" or axis == 1:
            # operating blockwise doesn't let us preserve dtypes
            expected = expected.astype("float64")

        result = df.agg(func, axis=axis)
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "df, func, expected",
        tm.get_cython_table_params(DataFrame([["a", "b"], ["b", "a"]]),
                                   [["cumprod", TypeError]]),
    )
    def test_agg_cython_table_raises(self, df, func, expected, axis):
        # GH 21224
        msg = "can't multiply sequence by non-int of type 'str'"
        with pytest.raises(expected, match=msg):
            df.agg(func, axis=axis)

    @pytest.mark.parametrize("num_cols", [2, 3, 5])
    def test_frequency_is_original(self, num_cols):
        # GH 22150
        index = pd.DatetimeIndex(["1950-06-30", "1952-10-24", "1953-05-29"])
        original = index.copy()
        df = DataFrame(1, index=index, columns=range(num_cols))
        df.apply(lambda x: x)
        assert index.freq == original.freq

    def test_apply_datetime_tz_issue(self):
        # GH 29052

        timestamps = [
            pd.Timestamp("2019-03-15 12:34:31.909000+0000", tz="UTC"),
            pd.Timestamp("2019-03-15 12:34:34.359000+0000", tz="UTC"),
            pd.Timestamp("2019-03-15 12:34:34.660000+0000", tz="UTC"),
        ]
        df = DataFrame(data=[0, 1, 2], index=timestamps)
        result = df.apply(lambda x: x.name, axis=1)
        expected = pd.Series(index=timestamps, data=timestamps)

        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "df", [pd.DataFrame({
            "A": ["a", None],
            "B": ["c", "d"]
        })])
    @pytest.mark.parametrize("method", ["min", "max", "sum"])
    def test_consistency_of_aggregates_of_columns_with_missing_values(
            self, df, method):
        # GH 16832
        none_in_first_column_result = getattr(df[["A", "B"]], method)()
        none_in_second_column_result = getattr(df[["B", "A"]], method)()

        tm.assert_series_equal(none_in_first_column_result,
                               none_in_second_column_result)