コード例 #1
0
ファイル: conftest.py プロジェクト: youyou3418/pandas
    MultiIndex with a level that is a tzaware DatetimeIndex.
    """
    # GH#8367 round trip with pickle
    return MultiIndex.from_product(
        [[1, 2], ["a", "b"],
         pd.date_range("20130101", periods=3, tz="US/Eastern")],
        names=["one", "two", "three"],
    )


indices_dict = {
    "unicode": tm.makeUnicodeIndex(100),
    "string": tm.makeStringIndex(100),
    "datetime": tm.makeDateIndex(100),
    "datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"),
    "period": tm.makePeriodIndex(100),
    "timedelta": tm.makeTimedeltaIndex(100),
    "int": tm.makeIntIndex(100),
    "uint": tm.makeUIntIndex(100),
    "range": tm.makeRangeIndex(100),
    "float": tm.makeFloatIndex(100),
    "bool": tm.makeBoolIndex(10),
    "categorical": tm.makeCategoricalIndex(100),
    "interval": tm.makeIntervalIndex(100),
    "empty": Index([]),
    "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
    "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
    "multi": _create_multiindex(),
    "repeats": Index([0, 0, 1, 1, 2, 2]),
}
コード例 #2
0
class TestSeriesMisc:
    def test_scalarop_preserve_name(self, datetime_series):
        result = datetime_series * 2
        assert result.name == datetime_series.name

    def test_copy_name(self, datetime_series):
        result = datetime_series.copy()
        assert result.name == datetime_series.name

    def test_copy_index_name_checking(self, datetime_series):
        # don't want to be able to modify the index stored elsewhere after
        # making a copy

        datetime_series.index.name = None
        assert datetime_series.index.name is None
        assert datetime_series is datetime_series

        cp = datetime_series.copy()
        cp.index.name = "foo"
        printing.pprint_thing(datetime_series.index.name)
        assert datetime_series.index.name is None

    def test_append_preserve_name(self, datetime_series):
        result = datetime_series[:5].append(datetime_series[5:])
        assert result.name == datetime_series.name

    def test_binop_maybe_preserve_name(self, datetime_series):
        # names match, preserve
        result = datetime_series * datetime_series
        assert result.name == datetime_series.name
        result = datetime_series.mul(datetime_series)
        assert result.name == datetime_series.name

        result = datetime_series * datetime_series[:-2]
        assert result.name == datetime_series.name

        # names don't match, don't preserve
        cp = datetime_series.copy()
        cp.name = "something else"
        result = datetime_series + cp
        assert result.name is None
        result = datetime_series.add(cp)
        assert result.name is None

        ops = ["add", "sub", "mul", "div", "truediv", "floordiv", "mod", "pow"]
        ops = ops + ["r" + op for op in ops]
        for op in ops:
            # names match, preserve
            s = datetime_series.copy()
            result = getattr(s, op)(s)
            assert result.name == datetime_series.name

            # names don't match, don't preserve
            cp = datetime_series.copy()
            cp.name = "changed"
            result = getattr(s, op)(cp)
            assert result.name is None

    def test_combine_first_name(self, datetime_series):
        result = datetime_series.combine_first(datetime_series[:5])
        assert result.name == datetime_series.name

    def test_getitem_preserve_name(self, datetime_series):
        result = datetime_series[datetime_series > 0]
        assert result.name == datetime_series.name

        result = datetime_series[[0, 2, 4]]
        assert result.name == datetime_series.name

        result = datetime_series[5:10]
        assert result.name == datetime_series.name

    def test_pickle_datetimes(self, datetime_series):
        unp_ts = self._pickle_roundtrip(datetime_series)
        tm.assert_series_equal(unp_ts, datetime_series)

    def test_pickle_strings(self, string_series):
        unp_series = self._pickle_roundtrip(string_series)
        tm.assert_series_equal(unp_series, string_series)

    def _pickle_roundtrip(self, obj):

        with tm.ensure_clean() as path:
            obj.to_pickle(path)
            unpickled = pd.read_pickle(path)
            return unpickled

    def test_sort_index_name(self, datetime_series):
        result = datetime_series.sort_index(ascending=False)
        assert result.name == datetime_series.name

    def test_constructor_dict(self):
        d = {"a": 0.0, "b": 1.0, "c": 2.0}
        result = Series(d)
        expected = Series(d, index=sorted(d.keys()))
        tm.assert_series_equal(result, expected)

        result = Series(d, index=["b", "c", "d", "a"])
        expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"])
        tm.assert_series_equal(result, expected)

    def test_constructor_subclass_dict(self, dict_subclass):
        data = dict_subclass((x, 10.0 * x) for x in range(10))
        series = Series(data)
        expected = Series(dict(data.items()))
        tm.assert_series_equal(series, expected)

    def test_constructor_ordereddict(self):
        # GH3283
        data = OrderedDict(
            ("col{i}".format(i=i), np.random.random()) for i in range(12))

        series = Series(data)
        expected = Series(list(data.values()), list(data.keys()))
        tm.assert_series_equal(series, expected)

        # Test with subclass
        class A(OrderedDict):
            pass

        series = Series(A(data))
        tm.assert_series_equal(series, expected)

    def test_constructor_dict_multiindex(self):
        d = {("a", "a"): 0.0, ("b", "a"): 1.0, ("b", "c"): 2.0}
        _d = sorted(d.items())
        result = Series(d)
        expected = Series([x[1] for x in _d],
                          index=pd.MultiIndex.from_tuples([x[0] for x in _d]))
        tm.assert_series_equal(result, expected)

        d["z"] = 111.0
        _d.insert(0, ("z", d["z"]))
        result = Series(d)
        expected = Series([x[1] for x in _d],
                          index=pd.Index([x[0] for x in _d],
                                         tupleize_cols=False))
        result = result.reindex(index=expected.index)
        tm.assert_series_equal(result, expected)

    def test_constructor_dict_timedelta_index(self):
        # GH #12169 : Resample category data with timedelta index
        # construct Series from dict as data and TimedeltaIndex as index
        # will result NaN in result Series data
        expected = Series(data=["A", "B", "C"],
                          index=pd.to_timedelta([0, 10, 20], unit="s"))

        result = Series(
            data={
                pd.to_timedelta(0, unit="s"): "A",
                pd.to_timedelta(10, unit="s"): "B",
                pd.to_timedelta(20, unit="s"): "C",
            },
            index=pd.to_timedelta([0, 10, 20], unit="s"),
        )
        tm.assert_series_equal(result, expected)

    def test_sparse_accessor_updates_on_inplace(self):
        s = pd.Series([1, 1, 2, 3], dtype="Sparse[int]")
        s.drop([0, 1], inplace=True)
        assert s.sparse.density == 1.0

    def test_tab_completion(self):
        # GH 9910
        s = Series(list("abcd"))
        # Series of str values should have .str but not .dt/.cat in __dir__
        assert "str" in dir(s)
        assert "dt" not in dir(s)
        assert "cat" not in dir(s)

        # similarly for .dt
        s = Series(date_range("1/1/2015", periods=5))
        assert "dt" in dir(s)
        assert "str" not in dir(s)
        assert "cat" not in dir(s)

        # Similarly for .cat, but with the twist that str and dt should be
        # there if the categories are of that type first cat and str.
        s = Series(list("abbcd"), dtype="category")
        assert "cat" in dir(s)
        assert "str" in dir(s)  # as it is a string categorical
        assert "dt" not in dir(s)

        # similar to cat and str
        s = Series(date_range("1/1/2015", periods=5)).astype("category")
        assert "cat" in dir(s)
        assert "str" not in dir(s)
        assert "dt" in dir(s)  # as it is a datetime categorical

    def test_tab_completion_with_categorical(self):
        # test the tab completion display
        ok_for_cat = [
            "categories",
            "codes",
            "ordered",
            "set_categories",
            "add_categories",
            "remove_categories",
            "rename_categories",
            "reorder_categories",
            "remove_unused_categories",
            "as_ordered",
            "as_unordered",
        ]

        def get_dir(s):
            results = [r for r in s.cat.__dir__() if not r.startswith("_")]
            return sorted(set(results))

        s = Series(list("aabbcde")).astype("category")
        results = get_dir(s)
        tm.assert_almost_equal(results, sorted(set(ok_for_cat)))

    @pytest.mark.parametrize(
        "index",
        [
            tm.makeUnicodeIndex(10),
            tm.makeStringIndex(10),
            tm.makeCategoricalIndex(10),
            Index(["foo", "bar", "baz"] * 2),
            tm.makeDateIndex(10),
            tm.makePeriodIndex(10),
            tm.makeTimedeltaIndex(10),
            tm.makeIntIndex(10),
            tm.makeUIntIndex(10),
            tm.makeIntIndex(10),
            tm.makeFloatIndex(10),
            Index([True, False]),
            Index(["a{}".format(i) for i in range(101)]),
            pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
            pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
        ],
    )
    def test_index_tab_completion(self, index):
        # dir contains string-like values of the Index.
        s = pd.Series(index=index, dtype=object)
        dir_s = dir(s)
        for i, x in enumerate(s.index.unique(level=0)):
            if i < 100:
                assert not isinstance(
                    x, str) or not x.isidentifier() or x in dir_s
            else:
                assert x not in dir_s

    def test_not_hashable(self):
        s_empty = Series(dtype=object)
        s = Series([1])
        msg = "'Series' objects are mutable, thus they cannot be hashed"
        with pytest.raises(TypeError, match=msg):
            hash(s_empty)
        with pytest.raises(TypeError, match=msg):
            hash(s)

    def test_contains(self, datetime_series):
        tm.assert_contains_all(datetime_series.index, datetime_series)

    def test_iter_datetimes(self, datetime_series):
        for i, val in enumerate(datetime_series):
            assert val == datetime_series[i]

    def test_iter_strings(self, string_series):
        for i, val in enumerate(string_series):
            assert val == string_series[i]

    def test_keys(self, datetime_series):
        # HACK: By doing this in two stages, we avoid 2to3 wrapping the call
        # to .keys() in a list()
        getkeys = datetime_series.keys
        assert getkeys() is datetime_series.index

    def test_values(self, datetime_series):
        tm.assert_almost_equal(datetime_series.values,
                               datetime_series,
                               check_dtype=False)

    def test_iteritems_datetimes(self, datetime_series):
        for idx, val in datetime_series.iteritems():
            assert val == datetime_series[idx]

    def test_iteritems_strings(self, string_series):
        for idx, val in string_series.iteritems():
            assert val == string_series[idx]

        # assert is lazy (generators don't define reverse, lists do)
        assert not hasattr(string_series.iteritems(), "reverse")

    def test_items_datetimes(self, datetime_series):
        for idx, val in datetime_series.items():
            assert val == datetime_series[idx]

    def test_items_strings(self, string_series):
        for idx, val in string_series.items():
            assert val == string_series[idx]

        # assert is lazy (generators don't define reverse, lists do)
        assert not hasattr(string_series.items(), "reverse")

    def test_raise_on_info(self):
        s = Series(np.random.randn(10))
        msg = "'Series' object has no attribute 'info'"
        with pytest.raises(AttributeError, match=msg):
            s.info()

    def test_copy(self):

        for deep in [None, False, True]:
            s = Series(np.arange(10), dtype="float64")

            # default deep is True
            if deep is None:
                s2 = s.copy()
            else:
                s2 = s.copy(deep=deep)

            s2[::2] = np.NaN

            if deep is None or deep is True:
                # Did not modify original Series
                assert np.isnan(s2[0])
                assert not np.isnan(s[0])
            else:
                # we DID modify the original Series
                assert np.isnan(s2[0])
                assert np.isnan(s[0])

    def test_copy_tzaware(self):
        # GH#11794
        # copy of tz-aware
        expected = Series([Timestamp("2012/01/01", tz="UTC")])
        expected2 = Series([Timestamp("1999/01/01", tz="UTC")])

        for deep in [None, False, True]:

            s = Series([Timestamp("2012/01/01", tz="UTC")])

            if deep is None:
                s2 = s.copy()
            else:
                s2 = s.copy(deep=deep)

            s2[0] = pd.Timestamp("1999/01/01", tz="UTC")

            # default deep is True
            if deep is None or deep is True:
                # Did not modify original Series
                tm.assert_series_equal(s2, expected2)
                tm.assert_series_equal(s, expected)
            else:
                # we DID modify the original Series
                tm.assert_series_equal(s2, expected2)
                tm.assert_series_equal(s, expected2)

    def test_axis_alias(self):
        s = Series([1, 2, np.nan])
        tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
        assert s.dropna().sum("rows") == 3
        assert s._get_axis_number("rows") == 0
        assert s._get_axis_name("rows") == "index"

    def test_class_axis(self):
        # https://github.com/pandas-dev/pandas/issues/18147
        # no exception and no empty docstring
        assert pydoc.getdoc(Series.index)

    def test_numpy_unique(self, datetime_series):
        # it works!
        np.unique(datetime_series)

    def test_item(self):
        s = Series([1])
        result = s.item()
        assert result == 1
        assert result == s.iloc[0]
        assert isinstance(result, int)  # i.e. not np.int64

        ser = Series([0.5], index=[3])
        result = ser.item()
        assert isinstance(result, float)
        assert result == 0.5

        ser = Series([1, 2])
        msg = "can only convert an array of size 1"
        with pytest.raises(ValueError, match=msg):
            ser.item()

        dti = pd.date_range("2016-01-01", periods=2)
        with pytest.raises(ValueError, match=msg):
            dti.item()
        with pytest.raises(ValueError, match=msg):
            Series(dti).item()

        val = dti[:1].item()
        assert isinstance(val, Timestamp)
        val = Series(dti)[:1].item()
        assert isinstance(val, Timestamp)

        tdi = dti - dti
        with pytest.raises(ValueError, match=msg):
            tdi.item()
        with pytest.raises(ValueError, match=msg):
            Series(tdi).item()

        val = tdi[:1].item()
        assert isinstance(val, Timedelta)
        val = Series(tdi)[:1].item()
        assert isinstance(val, Timedelta)

        # Case where ser[0] would not work
        ser = Series(dti, index=[5, 6])
        val = ser[:1].item()
        assert val == dti[0]

    def test_ndarray_compat(self):

        # test numpy compat with Series as sub-class of NDFrame
        tsdf = DataFrame(
            np.random.randn(1000, 3),
            columns=["A", "B", "C"],
            index=date_range("1/1/2000", periods=1000),
        )

        def f(x):
            return x[x.idxmax()]

        result = tsdf.apply(f)
        expected = tsdf.max()
        tm.assert_series_equal(result, expected)

        # using an ndarray like function
        s = Series(np.random.randn(10))
        result = Series(np.ones_like(s))
        expected = Series(1, index=range(10), dtype="float64")
        tm.assert_series_equal(result, expected)

        # ravel
        s = Series(np.random.randn(10))
        tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))

    def test_str_accessor_updates_on_inplace(self):
        s = pd.Series(list("abc"))
        s.drop([0], inplace=True)
        assert len(s.str.lower()) == 2

    def test_str_attribute(self):
        # GH9068
        methods = ["strip", "rstrip", "lstrip"]
        s = Series([" jack", "jill ", " jesse ", "frank"])
        for method in methods:
            expected = Series([getattr(str, method)(x) for x in s.values])
            tm.assert_series_equal(
                getattr(Series.str, method)(s.str), expected)

        # str accessor only valid with string values
        s = Series(range(5))
        with pytest.raises(AttributeError, match="only use .str accessor"):
            s.str.repeat(2)

    def test_empty_method(self):
        s_empty = pd.Series(dtype=object)
        assert s_empty.empty

        s2 = pd.Series(index=[1], dtype=object)
        for full_series in [pd.Series([1]), s2]:
            assert not full_series.empty

    @async_mark()
    async def test_tab_complete_warning(self, ip):
        # https://github.com/pandas-dev/pandas/issues/16409
        pytest.importorskip("IPython", minversion="6.0.0")
        from IPython.core.completer import provisionalcompleter

        code = "import pandas as pd; s = pd.Series()"
        await ip.run_code(code)

        # TODO: remove it when Ipython updates
        # GH 33567, jedi version raises Deprecation warning in Ipython
        import jedi

        if jedi.__version__ < "0.17.0":
            warning = tm.assert_produces_warning(None)
        else:
            warning = tm.assert_produces_warning(DeprecationWarning,
                                                 check_stacklevel=False)
        with warning:
            with provisionalcompleter("ignore"):
                list(ip.Completer.completions("s.", 1))

    def test_integer_series_size(self):
        # GH 25580
        s = Series(range(9))
        assert s.size == 9
        s = Series(range(9), dtype="Int64")
        assert s.size == 9

    def test_attrs(self):
        s = pd.Series([0, 1], name="abc")
        assert s.attrs == {}
        s.attrs["version"] = 1
        result = s + 1
        assert result.attrs == {"version": 1}
コード例 #3
0
class TestPeriodIndex(DatetimeLike):
    _holder = PeriodIndex

    @pytest.fixture(
        params=[
            tm.makePeriodIndex(10),
            period_range("20130101", periods=10, freq="D")[::-1],
        ],
        ids=["index_inc", "index_dec"],
    )
    def indices(self, request):
        return request.param

    def create_index(self) -> PeriodIndex:
        return period_range("20130101", periods=5, freq="D")

    def test_pickle_compat_construction(self):
        pass

    @pytest.mark.parametrize("freq", ["D", "M", "A"])
    def test_pickle_round_trip(self, freq):
        idx = PeriodIndex(["2016-05-16", "NaT", NaT, np.NaN], freq=freq)
        result = tm.round_trip_pickle(idx)
        tm.assert_index_equal(result, idx)

    def test_where(self):
        # This is handled in test_indexing
        pass

    @pytest.mark.parametrize("use_numpy", [True, False])
    @pytest.mark.parametrize(
        "index",
        [
            period_range("2000-01-01", periods=3, freq="D"),
            period_range("2001-01-01", periods=3, freq="2D"),
            PeriodIndex(["2001-01", "NaT", "2003-01"], freq="M"),
        ],
    )
    def test_repeat_freqstr(self, index, use_numpy):
        # GH10183
        expected = PeriodIndex([p for p in index for _ in range(3)])
        result = np.repeat(index, 3) if use_numpy else index.repeat(3)
        tm.assert_index_equal(result, expected)
        assert result.freqstr == index.freqstr

    def test_fillna_period(self):
        # GH 11343
        idx = PeriodIndex(["2011-01-01 09:00", NaT, "2011-01-01 11:00"],
                          freq="H")

        exp = PeriodIndex(
            ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
            freq="H")
        tm.assert_index_equal(idx.fillna(Period("2011-01-01 10:00", freq="H")),
                              exp)

        exp = Index(
            [
                Period("2011-01-01 09:00", freq="H"),
                "x",
                Period("2011-01-01 11:00", freq="H"),
            ],
            dtype=object,
        )
        tm.assert_index_equal(idx.fillna("x"), exp)

        exp = Index(
            [
                Period("2011-01-01 09:00", freq="H"),
                Period("2011-01-01", freq="D"),
                Period("2011-01-01 11:00", freq="H"),
            ],
            dtype=object,
        )
        tm.assert_index_equal(idx.fillna(Period("2011-01-01", freq="D")), exp)

    def test_no_millisecond_field(self):
        msg = "type object 'DatetimeIndex' has no attribute 'millisecond'"
        with pytest.raises(AttributeError, match=msg):
            DatetimeIndex.millisecond

        msg = "'DatetimeIndex' object has no attribute 'millisecond'"
        with pytest.raises(AttributeError, match=msg):
            DatetimeIndex([]).millisecond

    def test_make_time_series(self):
        index = period_range(freq="A", start="1/1/2001", end="12/1/2009")
        series = Series(1, index=index)
        assert isinstance(series, Series)

    def test_shallow_copy_empty(self):
        # GH13067
        idx = PeriodIndex([], freq="M")
        result = idx._shallow_copy()
        expected = idx

        tm.assert_index_equal(result, expected)

    def test_shallow_copy_disallow_i8(self):
        # GH-24391
        pi = period_range("2018-01-01", periods=3, freq="2D")
        with pytest.raises(AssertionError, match="ndarray"):
            pi._shallow_copy(pi.asi8)

    def test_shallow_copy_requires_disallow_period_index(self):
        pi = period_range("2018-01-01", periods=3, freq="2D")
        with pytest.raises(AssertionError, match="PeriodIndex"):
            pi._shallow_copy(pi)

    def test_view_asi8(self):
        idx = PeriodIndex([], freq="M")

        exp = np.array([], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.view("i8"), exp)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        idx = PeriodIndex(["2011-01", NaT], freq="M")

        exp = np.array([492, -9223372036854775808], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.view("i8"), exp)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        exp = np.array([14975, -9223372036854775808], dtype=np.int64)
        idx = PeriodIndex(["2011-01-01", NaT], freq="D")
        tm.assert_numpy_array_equal(idx.view("i8"), exp)
        tm.assert_numpy_array_equal(idx.asi8, exp)

    def test_values(self):
        idx = PeriodIndex([], freq="M")

        exp = np.array([], dtype=np.object)
        tm.assert_numpy_array_equal(idx.values, exp)
        tm.assert_numpy_array_equal(idx.to_numpy(), exp)

        exp = np.array([], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        idx = PeriodIndex(["2011-01", NaT], freq="M")

        exp = np.array([Period("2011-01", freq="M"), NaT], dtype=object)
        tm.assert_numpy_array_equal(idx.values, exp)
        tm.assert_numpy_array_equal(idx.to_numpy(), exp)
        exp = np.array([492, -9223372036854775808], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        idx = PeriodIndex(["2011-01-01", NaT], freq="D")

        exp = np.array([Period("2011-01-01", freq="D"), NaT], dtype=object)
        tm.assert_numpy_array_equal(idx.values, exp)
        tm.assert_numpy_array_equal(idx.to_numpy(), exp)
        exp = np.array([14975, -9223372036854775808], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.asi8, exp)

    def test_period_index_length(self):
        pi = period_range(freq="A", start="1/1/2001", end="12/1/2009")
        assert len(pi) == 9

        pi = period_range(freq="Q", start="1/1/2001", end="12/1/2009")
        assert len(pi) == 4 * 9

        pi = period_range(freq="M", start="1/1/2001", end="12/1/2009")
        assert len(pi) == 12 * 9

        start = Period("02-Apr-2005", "B")
        i1 = period_range(start=start, periods=20)
        assert len(i1) == 20
        assert i1.freq == start.freq
        assert i1[0] == start

        end_intv = Period("2006-12-31", "W")
        i1 = period_range(end=end_intv, periods=10)
        assert len(i1) == 10
        assert i1.freq == end_intv.freq
        assert i1[-1] == end_intv

        end_intv = Period("2006-12-31", "1w")
        i2 = period_range(end=end_intv, periods=10)
        assert len(i1) == len(i2)
        assert (i1 == i2).all()
        assert i1.freq == i2.freq

        end_intv = Period("2006-12-31", ("w", 1))
        i2 = period_range(end=end_intv, periods=10)
        assert len(i1) == len(i2)
        assert (i1 == i2).all()
        assert i1.freq == i2.freq

        msg = "start and end must have same freq"
        with pytest.raises(ValueError, match=msg):
            period_range(start=start, end=end_intv)

        end_intv = Period("2005-05-01", "B")
        i1 = period_range(start=start, end=end_intv)

        msg = ("Of the three parameters: start, end, and periods, exactly two "
               "must be specified")
        with pytest.raises(ValueError, match=msg):
            period_range(start=start)

        # infer freq from first element
        i2 = PeriodIndex([end_intv, Period("2005-05-05", "B")])
        assert len(i2) == 2
        assert i2[0] == end_intv

        i2 = PeriodIndex(np.array([end_intv, Period("2005-05-05", "B")]))
        assert len(i2) == 2
        assert i2[0] == end_intv

        # Mixed freq should fail
        vals = [end_intv, Period("2006-12-31", "w")]
        msg = r"Input has different freq=W-SUN from PeriodIndex\(freq=B\)"
        with pytest.raises(IncompatibleFrequency, match=msg):
            PeriodIndex(vals)
        vals = np.array(vals)
        with pytest.raises(ValueError, match=msg):
            PeriodIndex(vals)

    def test_fields(self):
        # year, month, day, hour, minute
        # second, weekofyear, week, dayofweek, weekday, dayofyear, quarter
        # qyear
        pi = period_range(freq="A", start="1/1/2001", end="12/1/2005")
        self._check_all_fields(pi)

        pi = period_range(freq="Q", start="1/1/2001", end="12/1/2002")
        self._check_all_fields(pi)

        pi = period_range(freq="M", start="1/1/2001", end="1/1/2002")
        self._check_all_fields(pi)

        pi = period_range(freq="D", start="12/1/2001", end="6/1/2001")
        self._check_all_fields(pi)

        pi = period_range(freq="B", start="12/1/2001", end="6/1/2001")
        self._check_all_fields(pi)

        pi = period_range(freq="H", start="12/31/2001", end="1/1/2002 23:00")
        self._check_all_fields(pi)

        pi = period_range(freq="Min", start="12/31/2001", end="1/1/2002 00:20")
        self._check_all_fields(pi)

        pi = period_range(freq="S",
                          start="12/31/2001 00:00:00",
                          end="12/31/2001 00:05:00")
        self._check_all_fields(pi)

        end_intv = Period("2006-12-31", "W")
        i1 = period_range(end=end_intv, periods=10)
        self._check_all_fields(i1)

    def _check_all_fields(self, periodindex):
        fields = [
            "year",
            "month",
            "day",
            "hour",
            "minute",
            "second",
            "weekofyear",
            "week",
            "dayofweek",
            "dayofyear",
            "quarter",
            "qyear",
            "days_in_month",
        ]

        periods = list(periodindex)
        s = pd.Series(periodindex)

        for field in fields:
            field_idx = getattr(periodindex, field)
            assert len(periodindex) == len(field_idx)
            for x, val in zip(periods, field_idx):
                assert getattr(x, field) == val

            if len(s) == 0:
                continue

            field_s = getattr(s.dt, field)
            assert len(periodindex) == len(field_s)
            for x, val in zip(periods, field_s):
                assert getattr(x, field) == val

    def test_period_set_index_reindex(self):
        # GH 6631
        df = DataFrame(np.random.random(6))
        idx1 = period_range("2011/01/01", periods=6, freq="M")
        idx2 = period_range("2013", periods=6, freq="A")

        df = df.set_index(idx1)
        tm.assert_index_equal(df.index, idx1)
        df = df.set_index(idx2)
        tm.assert_index_equal(df.index, idx2)

    @pytest.mark.parametrize(
        "p_values, o_values, values, expected_values",
        [
            (
                [Period("2019Q1", "Q-DEC"),
                 Period("2019Q2", "Q-DEC")],
                [Period("2019Q1", "Q-DEC"),
                 Period("2019Q2", "Q-DEC"), "All"],
                [1.0, 1.0],
                [1.0, 1.0, np.nan],
            ),
            (
                [Period("2019Q1", "Q-DEC"),
                 Period("2019Q2", "Q-DEC")],
                [Period("2019Q1", "Q-DEC"),
                 Period("2019Q2", "Q-DEC")],
                [1.0, 1.0],
                [1.0, 1.0],
            ),
        ],
    )
    def test_period_reindex_with_object(self, p_values, o_values, values,
                                        expected_values):
        # GH 28337
        period_index = PeriodIndex(p_values)
        object_index = Index(o_values)

        s = pd.Series(values, index=period_index)
        result = s.reindex(object_index)
        expected = pd.Series(expected_values, index=object_index)
        tm.assert_series_equal(result, expected)

    def test_factorize(self):
        idx1 = PeriodIndex(
            ["2014-01", "2014-01", "2014-02", "2014-02", "2014-03", "2014-03"],
            freq="M")

        exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp)
        exp_idx = PeriodIndex(["2014-01", "2014-02", "2014-03"], freq="M")

        arr, idx = idx1.factorize()
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        arr, idx = idx1.factorize(sort=True)
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        idx2 = PeriodIndex(
            ["2014-03", "2014-03", "2014-02", "2014-01", "2014-03", "2014-01"],
            freq="M")

        exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.intp)
        arr, idx = idx2.factorize(sort=True)
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

        exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp)
        exp_idx = PeriodIndex(["2014-03", "2014-02", "2014-01"], freq="M")
        arr, idx = idx2.factorize()
        tm.assert_numpy_array_equal(arr, exp_arr)
        tm.assert_index_equal(idx, exp_idx)

    def test_is_(self):
        create_index = lambda: period_range(
            freq="A", start="1/1/2001", end="12/1/2009")
        index = create_index()
        assert index.is_(index)
        assert not index.is_(create_index())
        assert index.is_(index.view())
        assert index.is_(index.view().view().view().view().view())
        assert index.view().is_(index)
        ind2 = index.view()
        index.name = "Apple"
        assert ind2.is_(index)
        assert not index.is_(index[:])
        assert not index.is_(index.asfreq("M"))
        assert not index.is_(index.asfreq("A"))

        assert not index.is_(index - 2)
        assert not index.is_(index - 0)

    def test_contains(self):
        rng = period_range("2007-01", freq="M", periods=10)

        assert Period("2007-01", freq="M") in rng
        assert not Period("2007-01", freq="D") in rng
        assert not Period("2007-01", freq="2M") in rng

    def test_contains_nat(self):
        # see gh-13582
        idx = period_range("2007-01", freq="M", periods=10)
        assert NaT not in idx
        assert None not in idx
        assert float("nan") not in idx
        assert np.nan not in idx

        idx = PeriodIndex(["2011-01", "NaT", "2011-02"], freq="M")
        assert NaT in idx
        assert None in idx
        assert float("nan") in idx
        assert np.nan in idx

    def test_periods_number_check(self):
        msg = ("Of the three parameters: start, end, and periods, exactly two "
               "must be specified")
        with pytest.raises(ValueError, match=msg):
            period_range("2011-1-1", "2012-1-1", "B")

    def test_index_duplicate_periods(self):
        # monotonic
        idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
        ts = Series(np.random.randn(len(idx)), index=idx)

        result = ts["2007"]
        expected = ts[1:3]
        tm.assert_series_equal(result, expected)
        result[:] = 1
        assert (ts[1:3] == 1).all()

        # not monotonic
        idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq="A-JUN")
        ts = Series(np.random.randn(len(idx)), index=idx)

        result = ts["2007"]
        expected = ts[idx == "2007"]
        tm.assert_series_equal(result, expected)

    def test_index_unique(self):
        idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
        expected = PeriodIndex([2000, 2007, 2009], freq="A-JUN")
        tm.assert_index_equal(idx.unique(), expected)
        assert idx.nunique() == 3

        idx = PeriodIndex([2000, 2007, 2007, 2009, 2007],
                          freq="A-JUN",
                          tz="US/Eastern")
        expected = PeriodIndex([2000, 2007, 2009],
                               freq="A-JUN",
                               tz="US/Eastern")
        tm.assert_index_equal(idx.unique(), expected)
        assert idx.nunique() == 3

    def test_shift(self):
        # This is tested in test_arithmetic
        pass

    @td.skip_if_32bit
    def test_ndarray_compat_properties(self):
        super().test_ndarray_compat_properties()

    def test_negative_ordinals(self):
        Period(ordinal=-1000, freq="A")
        Period(ordinal=0, freq="A")

        idx1 = PeriodIndex(ordinal=[-1, 0, 1], freq="A")
        idx2 = PeriodIndex(ordinal=np.array([-1, 0, 1]), freq="A")
        tm.assert_index_equal(idx1, idx2)

    def test_pindex_fieldaccessor_nat(self):
        idx = PeriodIndex(["2011-01", "2011-02", "NaT", "2012-03", "2012-04"],
                          freq="D",
                          name="name")

        exp = Index([2011, 2011, -1, 2012, 2012], dtype=np.int64, name="name")
        tm.assert_index_equal(idx.year, exp)
        exp = Index([1, 2, -1, 3, 4], dtype=np.int64, name="name")
        tm.assert_index_equal(idx.month, exp)

    def test_pindex_qaccess(self):
        pi = PeriodIndex(["2Q05", "3Q05", "4Q05", "1Q06", "2Q06"], freq="Q")
        s = Series(np.random.rand(len(pi)), index=pi).cumsum()
        # Todo: fix these accessors!
        assert s["05Q4"] == s[2]

    def test_pindex_multiples(self):
        expected = PeriodIndex(
            ["2011-01", "2011-03", "2011-05", "2011-07", "2011-09", "2011-11"],
            freq="2M",
        )

        pi = period_range(start="1/1/11", end="12/31/11", freq="2M")
        tm.assert_index_equal(pi, expected)
        assert pi.freq == offsets.MonthEnd(2)
        assert pi.freqstr == "2M"

        pi = period_range(start="1/1/11", periods=6, freq="2M")
        tm.assert_index_equal(pi, expected)
        assert pi.freq == offsets.MonthEnd(2)
        assert pi.freqstr == "2M"

    def test_iteration(self):
        index = period_range(start="1/1/10", periods=4, freq="B")

        result = list(index)
        assert isinstance(result[0], Period)
        assert result[0].freq == index.freq

    def test_is_full(self):
        index = PeriodIndex([2005, 2007, 2009], freq="A")
        assert not index.is_full

        index = PeriodIndex([2005, 2006, 2007], freq="A")
        assert index.is_full

        index = PeriodIndex([2005, 2005, 2007], freq="A")
        assert not index.is_full

        index = PeriodIndex([2005, 2005, 2006], freq="A")
        assert index.is_full

        index = PeriodIndex([2006, 2005, 2005], freq="A")
        with pytest.raises(ValueError, match="Index is not monotonic"):
            index.is_full

        assert index[:0].is_full

    def test_with_multi_index(self):
        # #1705
        index = date_range("1/1/2012", periods=4, freq="12H")
        index_as_arrays = [index.to_period(freq="D"), index.hour]

        s = Series([0, 1, 2, 3], index_as_arrays)

        assert isinstance(s.index.levels[0], PeriodIndex)

        assert isinstance(s.index.values[0][0], Period)

    def test_convert_array_of_periods(self):
        rng = period_range("1/1/2000", periods=20, freq="D")
        periods = list(rng)

        result = Index(periods)
        assert isinstance(result, PeriodIndex)

    def test_append_concat(self):
        # #1815
        d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC")
        d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC")

        s1 = Series(np.random.randn(10), d1)
        s2 = Series(np.random.randn(10), d2)

        s1 = s1.to_period()
        s2 = s2.to_period()

        # drops index
        result = pd.concat([s1, s2])
        assert isinstance(result.index, PeriodIndex)
        assert result.index[0] == s1.index[0]

    def test_pickle_freq(self):
        # GH2891
        prng = period_range("1/1/2011", "1/1/2012", freq="M")
        new_prng = tm.round_trip_pickle(prng)
        assert new_prng.freq == offsets.MonthEnd()
        assert new_prng.freqstr == "M"

    def test_map(self):
        # test_map_dictlike generally tests

        index = PeriodIndex([2005, 2007, 2009], freq="A")
        result = index.map(lambda x: x.ordinal)
        exp = Index([x.ordinal for x in index])
        tm.assert_index_equal(result, exp)

    def test_insert(self):
        # GH 18295 (test missing)
        expected = PeriodIndex(["2017Q1", NaT, "2017Q2", "2017Q3", "2017Q4"],
                               freq="Q")
        for na in (np.nan, NaT, None):
            result = period_range("2017Q1", periods=4, freq="Q").insert(1, na)
            tm.assert_index_equal(result, expected)

    @pytest.mark.parametrize(
        "msg, key",
        [
            (r"Period\('2019', 'A-DEC'\), 'foo', 'bar'",
             (Period(2019), "foo", "bar")),
            (r"Period\('2019', 'A-DEC'\), 'y1', 'bar'",
             (Period(2019), "y1", "bar")),
            (r"Period\('2019', 'A-DEC'\), 'foo', 'z1'",
             (Period(2019), "foo", "z1")),
            (
                r"Period\('2018', 'A-DEC'\), Period\('2016', 'A-DEC'\), 'bar'",
                (Period(2018), Period(2016), "bar"),
            ),
            (r"Period\('2018', 'A-DEC'\), 'foo', 'y1'",
             (Period(2018), "foo", "y1")),
            (
                r"Period\('2017', 'A-DEC'\), 'foo', Period\('2015', 'A-DEC'\)",
                (Period(2017), "foo", Period(2015)),
            ),
            (r"Period\('2017', 'A-DEC'\), 'z1', 'bar'",
             (Period(2017), "z1", "bar")),
        ],
    )
    def test_contains_raise_error_if_period_index_is_in_multi_index(
            self, msg, key):
        # issue 20684
        """
        parse_time_string return parameter if type not matched.
        PeriodIndex.get_loc takes returned value from parse_time_string as a tuple.
        If first argument is Period and a tuple has 3 items,
        process go on not raise exception
        """
        df = DataFrame({
            "A": [Period(2019), "x1", "x2"],
            "B": [Period(2018), Period(2016), "y1"],
            "C": [Period(2017), "z1", Period(2015)],
            "V1": [1, 2, 3],
            "V2": [10, 20, 30],
        }).set_index(["A", "B", "C"])
        with pytest.raises(KeyError, match=msg):
            df.loc[key]
コード例 #4
0
class TestSeriesMisc:
    def test_tab_completion(self):
        # GH 9910
        s = Series(list("abcd"))
        # Series of str values should have .str but not .dt/.cat in __dir__
        assert "str" in dir(s)
        assert "dt" not in dir(s)
        assert "cat" not in dir(s)

        # similarly for .dt
        s = Series(date_range("1/1/2015", periods=5))
        assert "dt" in dir(s)
        assert "str" not in dir(s)
        assert "cat" not in dir(s)

        # Similarly for .cat, but with the twist that str and dt should be
        # there if the categories are of that type first cat and str.
        s = Series(list("abbcd"), dtype="category")
        assert "cat" in dir(s)
        assert "str" in dir(s)  # as it is a string categorical
        assert "dt" not in dir(s)

        # similar to cat and str
        s = Series(date_range("1/1/2015", periods=5)).astype("category")
        assert "cat" in dir(s)
        assert "str" not in dir(s)
        assert "dt" in dir(s)  # as it is a datetime categorical

    def test_tab_completion_with_categorical(self):
        # test the tab completion display
        ok_for_cat = [
            "categories",
            "codes",
            "ordered",
            "set_categories",
            "add_categories",
            "remove_categories",
            "rename_categories",
            "reorder_categories",
            "remove_unused_categories",
            "as_ordered",
            "as_unordered",
        ]

        def get_dir(s):
            results = [r for r in s.cat.__dir__() if not r.startswith("_")]
            return sorted(set(results))

        s = Series(list("aabbcde")).astype("category")
        results = get_dir(s)
        tm.assert_almost_equal(results, sorted(set(ok_for_cat)))

    @pytest.mark.parametrize(
        "index",
        [
            tm.makeUnicodeIndex(10),
            tm.makeStringIndex(10),
            tm.makeCategoricalIndex(10),
            Index(["foo", "bar", "baz"] * 2),
            tm.makeDateIndex(10),
            tm.makePeriodIndex(10),
            tm.makeTimedeltaIndex(10),
            tm.makeIntIndex(10),
            tm.makeUIntIndex(10),
            tm.makeIntIndex(10),
            tm.makeFloatIndex(10),
            Index([True, False]),
            Index([f"a{i}" for i in range(101)]),
            pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
            pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
        ],
    )
    def test_index_tab_completion(self, index):
        # dir contains string-like values of the Index.
        s = Series(index=index, dtype=object)
        dir_s = dir(s)
        for i, x in enumerate(s.index.unique(level=0)):
            if i < 100:
                assert not isinstance(
                    x, str) or not x.isidentifier() or x in dir_s
            else:
                assert x not in dir_s

    def test_not_hashable(self):
        s_empty = Series(dtype=object)
        s = Series([1])
        msg = "'Series' objects are mutable, thus they cannot be hashed"
        with pytest.raises(TypeError, match=msg):
            hash(s_empty)
        with pytest.raises(TypeError, match=msg):
            hash(s)

    def test_contains(self, datetime_series):
        tm.assert_contains_all(datetime_series.index, datetime_series)

    def test_raise_on_info(self):
        s = Series(np.random.randn(10))
        msg = "'Series' object has no attribute 'info'"
        with pytest.raises(AttributeError, match=msg):
            s.info()

    def test_axis_alias(self):
        s = Series([1, 2, np.nan])
        tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
        assert s.dropna().sum("rows") == 3
        assert s._get_axis_number("rows") == 0
        assert s._get_axis_name("rows") == "index"

    def test_class_axis(self):
        # https://github.com/pandas-dev/pandas/issues/18147
        # no exception and no empty docstring
        assert pydoc.getdoc(Series.index)

    def test_ndarray_compat(self):

        # test numpy compat with Series as sub-class of NDFrame
        tsdf = DataFrame(
            np.random.randn(1000, 3),
            columns=["A", "B", "C"],
            index=date_range("1/1/2000", periods=1000),
        )

        def f(x):
            return x[x.idxmax()]

        result = tsdf.apply(f)
        expected = tsdf.max()
        tm.assert_series_equal(result, expected)

        # using an ndarray like function
        s = Series(np.random.randn(10))
        result = Series(np.ones_like(s))
        expected = Series(1, index=range(10), dtype="float64")
        tm.assert_series_equal(result, expected)

        # ravel
        s = Series(np.random.randn(10))
        tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))

    def test_empty_method(self):
        s_empty = Series(dtype=object)
        assert s_empty.empty

        s2 = Series(index=[1], dtype=object)
        for full_series in [Series([1]), s2]:
            assert not full_series.empty

    def test_integer_series_size(self):
        # GH 25580
        s = Series(range(9))
        assert s.size == 9
        s = Series(range(9), dtype="Int64")
        assert s.size == 9

    def test_attrs(self):
        s = Series([0, 1], name="abc")
        assert s.attrs == {}
        s.attrs["version"] = 1
        result = s + 1
        assert result.attrs == {"version": 1}

    @skip_if_no("jinja2")
    def test_inspect_getmembers(self):
        # GH38782
        ser = Series(dtype=object)
        with tm.assert_produces_warning(None):
            inspect.getmembers(ser)
コード例 #5
0
ファイル: conftest.py プロジェクト: zhengfeiwang/pandas
         pd.date_range("20130101", periods=3, tz="US/Eastern")],
        names=["one", "two", "three"],
    )


indices_dict = {
    "unicode":
    tm.makeUnicodeIndex(100),
    "string":
    tm.makeStringIndex(100),
    "datetime":
    tm.makeDateIndex(100),
    "datetime-tz":
    tm.makeDateIndex(100, tz="US/Pacific"),
    "period":
    tm.makePeriodIndex(100),
    "timedelta":
    tm.makeTimedeltaIndex(100),
    "int":
    tm.makeIntIndex(100),
    "uint":
    tm.makeUIntIndex(100),
    "range":
    tm.makeRangeIndex(100),
    "float":
    tm.makeFloatIndex(100),
    "complex64":
    tm.makeFloatIndex(100).astype("complex64"),
    "complex128":
    tm.makeFloatIndex(100).astype("complex128"),
    "num_int64":
コード例 #6
0
ファイル: test_inference.py プロジェクト: sduzjp/Python
    assert rng.inferred_freq == "-1A-JAN"


def test_non_datetime_index2():
    rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"])
    vals = rng.to_pydatetime()

    result = frequencies.infer_freq(vals)
    assert result == rng.inferred_freq


@pytest.mark.parametrize(
    "idx",
    [tm.makeIntIndex(10),
     tm.makeFloatIndex(10),
     tm.makePeriodIndex(10)])
def test_invalid_index_types(idx):
    msg = ("(cannot infer freq from a non-convertible)|"
           "(Check the `freq` attribute instead of using infer_freq)")

    with pytest.raises(TypeError, match=msg):
        frequencies.infer_freq(idx)


@pytest.mark.skipif(is_platform_windows(),
                    reason="see gh-10822: Windows issue")
@pytest.mark.parametrize(
    "idx",
    [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)])
def test_invalid_index_types_unicode(idx):
    # see gh-10822
コード例 #7
0
ファイル: test_hashing.py プロジェクト: DriesSchaumont/pandas
        Series(["a", None, "c"]),
        Series([True, False, True]),
        Series(dtype=object),
        Index([1, 2, 3]),
        Index([True, False, True]),
        DataFrame({
            "x": ["a", "b", "c"],
            "y": [1, 2, 3]
        }),
        DataFrame(),
        tm.makeMissingDataframe(),
        tm.makeMixedDataFrame(),
        tm.makeTimeDataFrame(),
        tm.makeTimeSeries(),
        tm.makeTimedeltaIndex(),
        tm.makePeriodIndex(),
        Series(tm.makePeriodIndex()),
        Series(pd.date_range("20130101", periods=3, tz="US/Eastern")),
        MultiIndex.from_product([
            range(5), ["foo", "bar", "baz"],
            pd.date_range("20130101", periods=2)
        ]),
        MultiIndex.from_product([pd.CategoricalIndex(list("aabc")),
                                 range(3)]),
    ],
)
def test_hash_pandas_object(obj, index):
    _check_equal(obj, index=index)
    _check_not_equal_with_index(obj)

コード例 #8
0
ファイル: test_ops.py プロジェクト: sourabhyadav999/pandas
    def setup_method(self, method):
        self.bool_index = tm.makeBoolIndex(10, name="a")
        self.int_index = tm.makeIntIndex(10, name="a")
        self.float_index = tm.makeFloatIndex(10, name="a")
        self.dt_index = tm.makeDateIndex(10, name="a")
        self.dt_tz_index = tm.makeDateIndex(
            10, name="a").tz_localize(tz="US/Eastern")
        self.period_index = tm.makePeriodIndex(10, name="a")
        self.string_index = tm.makeStringIndex(10, name="a")
        self.unicode_index = tm.makeUnicodeIndex(10, name="a")

        arr = np.random.randn(10)
        self.bool_series = Series(arr, index=self.bool_index, name="a")
        self.int_series = Series(arr, index=self.int_index, name="a")
        self.float_series = Series(arr, index=self.float_index, name="a")
        self.dt_series = Series(arr, index=self.dt_index, name="a")
        self.dt_tz_series = self.dt_tz_index.to_series()
        self.period_series = Series(arr, index=self.period_index, name="a")
        self.string_series = Series(arr, index=self.string_index, name="a")
        self.unicode_series = Series(arr, index=self.unicode_index, name="a")

        types = [
            "bool", "int", "float", "dt", "dt_tz", "period", "string",
            "unicode"
        ]
        self.indexes = [getattr(self, f"{t}_index") for t in types]
        self.series = [getattr(self, f"{t}_series") for t in types]

        # To test narrow dtypes, we use narrower *data* elements, not *index* elements
        index = self.int_index
        self.float32_series = Series(arr.astype(np.float32),
                                     index=index,
                                     name="a")

        arr_int = np.random.choice(10, size=10, replace=False)
        self.int8_series = Series(arr_int.astype(np.int8),
                                  index=index,
                                  name="a")
        self.int16_series = Series(arr_int.astype(np.int16),
                                   index=index,
                                   name="a")
        self.int32_series = Series(arr_int.astype(np.int32),
                                   index=index,
                                   name="a")

        self.uint8_series = Series(arr_int.astype(np.uint8),
                                   index=index,
                                   name="a")
        self.uint16_series = Series(arr_int.astype(np.uint16),
                                    index=index,
                                    name="a")
        self.uint32_series = Series(arr_int.astype(np.uint32),
                                    index=index,
                                    name="a")

        nrw_types = [
            "float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"
        ]
        self.narrow_series = [getattr(self, f"{t}_series") for t in nrw_types]

        self.objs = self.indexes + self.series + self.narrow_series
コード例 #9
0
    rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"])
    rng = rng[::-1]

    assert rng.inferred_freq == "-1A-JAN"


def test_non_datetime_index2():
    rng = DatetimeIndex(["1/31/2000", "1/31/2001", "1/31/2002"])
    vals = rng.to_pydatetime()

    result = frequencies.infer_freq(vals)
    assert result == rng.inferred_freq


@pytest.mark.parametrize(
    "idx", [tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10)]
)
def test_invalid_index_types(idx):
    msg = (
        "(cannot infer freq from a non-convertible)|"
        "(Check the `freq` attribute instead of using infer_freq)"
    )

    with pytest.raises(TypeError, match=msg):
        frequencies.infer_freq(idx)


@pytest.mark.skipif(is_platform_windows(), reason="see gh-10822: Windows issue")
@pytest.mark.parametrize("idx", [tm.makeStringIndex(10), tm.makeUnicodeIndex(10)])
def test_invalid_index_types_unicode(idx):
    # see gh-10822
コード例 #10
0
ファイル: test_api.py プロジェクト: zhengfeiwang/pandas
class TestSeriesMisc:
    def test_tab_completion(self):
        # GH 9910
        s = Series(list("abcd"))
        # Series of str values should have .str but not .dt/.cat in __dir__
        assert "str" in dir(s)
        assert "dt" not in dir(s)
        assert "cat" not in dir(s)

    def test_tab_completion_dt(self):
        # similarly for .dt
        s = Series(date_range("1/1/2015", periods=5))
        assert "dt" in dir(s)
        assert "str" not in dir(s)
        assert "cat" not in dir(s)

    def test_tab_completion_cat(self):
        # Similarly for .cat, but with the twist that str and dt should be
        # there if the categories are of that type first cat and str.
        s = Series(list("abbcd"), dtype="category")
        assert "cat" in dir(s)
        assert "str" in dir(s)  # as it is a string categorical
        assert "dt" not in dir(s)

    def test_tab_completion_cat_str(self):
        # similar to cat and str
        s = Series(date_range("1/1/2015", periods=5)).astype("category")
        assert "cat" in dir(s)
        assert "str" not in dir(s)
        assert "dt" in dir(s)  # as it is a datetime categorical

    def test_tab_completion_with_categorical(self):
        # test the tab completion display
        ok_for_cat = [
            "categories",
            "codes",
            "ordered",
            "set_categories",
            "add_categories",
            "remove_categories",
            "rename_categories",
            "reorder_categories",
            "remove_unused_categories",
            "as_ordered",
            "as_unordered",
        ]

        s = Series(list("aabbcde")).astype("category")
        results = sorted({r for r in s.cat.__dir__() if not r.startswith("_")})
        tm.assert_almost_equal(results, sorted(set(ok_for_cat)))

    @pytest.mark.parametrize(
        "index",
        [
            tm.makeUnicodeIndex(10),
            tm.makeStringIndex(10),
            tm.makeCategoricalIndex(10),
            Index(["foo", "bar", "baz"] * 2),
            tm.makeDateIndex(10),
            tm.makePeriodIndex(10),
            tm.makeTimedeltaIndex(10),
            tm.makeIntIndex(10),
            tm.makeUIntIndex(10),
            tm.makeIntIndex(10),
            tm.makeFloatIndex(10),
            Index([True, False]),
            Index([f"a{i}" for i in range(101)]),
            pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
            pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
        ],
    )
    def test_index_tab_completion(self, index):
        # dir contains string-like values of the Index.
        s = Series(index=index, dtype=object)
        dir_s = dir(s)
        for i, x in enumerate(s.index.unique(level=0)):
            if i < 100:
                assert not isinstance(
                    x, str) or not x.isidentifier() or x in dir_s
            else:
                assert x not in dir_s

    @pytest.mark.parametrize("ser", [Series(dtype=object), Series([1])])
    def test_not_hashable(self, ser):
        msg = "unhashable type: 'Series'"
        with pytest.raises(TypeError, match=msg):
            hash(ser)

    def test_contains(self, datetime_series):
        tm.assert_contains_all(datetime_series.index, datetime_series)

    def test_axis_alias(self):
        s = Series([1, 2, np.nan])
        tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
        assert s.dropna().sum("rows") == 3
        assert s._get_axis_number("rows") == 0
        assert s._get_axis_name("rows") == "index"

    def test_class_axis(self):
        # https://github.com/pandas-dev/pandas/issues/18147
        # no exception and no empty docstring
        assert pydoc.getdoc(Series.index)

    def test_ndarray_compat(self):

        # test numpy compat with Series as sub-class of NDFrame
        tsdf = DataFrame(
            np.random.randn(1000, 3),
            columns=["A", "B", "C"],
            index=date_range("1/1/2000", periods=1000),
        )

        def f(x):
            return x[x.idxmax()]

        result = tsdf.apply(f)
        expected = tsdf.max()
        tm.assert_series_equal(result, expected)

    def test_ndarray_compat_like_func(self):
        # using an ndarray like function
        s = Series(np.random.randn(10))
        result = Series(np.ones_like(s))
        expected = Series(1, index=range(10), dtype="float64")
        tm.assert_series_equal(result, expected)

    def test_ndarray_compat_ravel(self):
        # ravel
        s = Series(np.random.randn(10))
        tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))

    def test_empty_method(self):
        s_empty = Series(dtype=object)
        assert s_empty.empty

    @pytest.mark.parametrize("dtype", ["int64", object])
    def test_empty_method_full_series(self, dtype):
        full_series = Series(index=[1], dtype=dtype)
        assert not full_series.empty

    @pytest.mark.parametrize("dtype", [None, "Int64"])
    def test_integer_series_size(self, dtype):
        # GH 25580
        s = Series(range(9), dtype=dtype)
        assert s.size == 9

    def test_attrs(self):
        s = Series([0, 1], name="abc")
        assert s.attrs == {}
        s.attrs["version"] = 1
        result = s + 1
        assert result.attrs == {"version": 1}

    @skip_if_no("jinja2")
    def test_inspect_getmembers(self):
        # GH38782
        ser = Series(dtype=object)
        # TODO(2.0): Change to None once is_monotonic deprecation
        # is enforced
        with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
            inspect.getmembers(ser)

    def test_unknown_attribute(self):
        # GH#9680
        tdi = pd.timedelta_range(start=0, periods=10, freq="1s")
        ser = Series(np.random.normal(size=10), index=tdi)
        assert "foo" not in ser.__dict__.keys()
        msg = "'Series' object has no attribute 'foo'"
        with pytest.raises(AttributeError, match=msg):
            ser.foo

    @pytest.mark.parametrize("op", ["year", "day", "second", "weekday"])
    def test_datetime_series_no_datelike_attrs(self, op, datetime_series):
        # GH#7206
        msg = f"'Series' object has no attribute '{op}'"
        with pytest.raises(AttributeError, match=msg):
            getattr(datetime_series, op)

    def test_series_datetimelike_attribute_access(self):
        # attribute access should still work!
        ser = Series({"year": 2000, "month": 1, "day": 10})
        assert ser.year == 2000
        assert ser.month == 1
        assert ser.day == 10

    def test_series_datetimelike_attribute_access_invalid(self):
        ser = Series({"year": 2000, "month": 1, "day": 10})
        msg = "'Series' object has no attribute 'weekday'"
        with pytest.raises(AttributeError, match=msg):
            ser.weekday

    def test_series_iteritems_deprecated(self):
        ser = Series([1])
        with tm.assert_produces_warning(FutureWarning):
            next(ser.iteritems())
コード例 #11
0
class TestPeriodIndex(DatetimeLike):
    _index_cls = PeriodIndex

    @pytest.fixture
    def simple_index(self) -> Index:
        return period_range("20130101", periods=5, freq="D")

    @pytest.fixture(
        params=[
            tm.makePeriodIndex(10),
            period_range("20130101", periods=10, freq="D")[::-1],
        ],
        ids=["index_inc", "index_dec"],
    )
    def index(self, request):
        return request.param

    @pytest.mark.xfail(reason="Goes through a generate_range path")
    def test_pickle_compat_construction(self):
        super().test_pickle_compat_construction()

    @pytest.mark.parametrize("freq", ["D", "M", "A"])
    def test_pickle_round_trip(self, freq):
        idx = PeriodIndex(["2016-05-16", "NaT", NaT, np.NaN], freq=freq)
        result = tm.round_trip_pickle(idx)
        tm.assert_index_equal(result, idx)

    def test_where(self):
        # This is handled in test_indexing
        pass

    def test_make_time_series(self):
        index = period_range(freq="A", start="1/1/2001", end="12/1/2009")
        series = Series(1, index=index)
        assert isinstance(series, Series)

    def test_view_asi8(self):
        idx = PeriodIndex([], freq="M")

        exp = np.array([], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.view("i8"), exp)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        idx = PeriodIndex(["2011-01", NaT], freq="M")

        exp = np.array([492, -9223372036854775808], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.view("i8"), exp)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        exp = np.array([14975, -9223372036854775808], dtype=np.int64)
        idx = PeriodIndex(["2011-01-01", NaT], freq="D")
        tm.assert_numpy_array_equal(idx.view("i8"), exp)
        tm.assert_numpy_array_equal(idx.asi8, exp)

    def test_values(self):
        idx = PeriodIndex([], freq="M")

        exp = np.array([], dtype=object)
        tm.assert_numpy_array_equal(idx.values, exp)
        tm.assert_numpy_array_equal(idx.to_numpy(), exp)

        exp = np.array([], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        idx = PeriodIndex(["2011-01", NaT], freq="M")

        exp = np.array([Period("2011-01", freq="M"), NaT], dtype=object)
        tm.assert_numpy_array_equal(idx.values, exp)
        tm.assert_numpy_array_equal(idx.to_numpy(), exp)
        exp = np.array([492, -9223372036854775808], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.asi8, exp)

        idx = PeriodIndex(["2011-01-01", NaT], freq="D")

        exp = np.array([Period("2011-01-01", freq="D"), NaT], dtype=object)
        tm.assert_numpy_array_equal(idx.values, exp)
        tm.assert_numpy_array_equal(idx.to_numpy(), exp)
        exp = np.array([14975, -9223372036854775808], dtype=np.int64)
        tm.assert_numpy_array_equal(idx.asi8, exp)

    def test_period_index_length(self):
        pi = period_range(freq="A", start="1/1/2001", end="12/1/2009")
        assert len(pi) == 9

        pi = period_range(freq="Q", start="1/1/2001", end="12/1/2009")
        assert len(pi) == 4 * 9

        pi = period_range(freq="M", start="1/1/2001", end="12/1/2009")
        assert len(pi) == 12 * 9

        start = Period("02-Apr-2005", "B")
        i1 = period_range(start=start, periods=20)
        assert len(i1) == 20
        assert i1.freq == start.freq
        assert i1[0] == start

        end_intv = Period("2006-12-31", "W")
        i1 = period_range(end=end_intv, periods=10)
        assert len(i1) == 10
        assert i1.freq == end_intv.freq
        assert i1[-1] == end_intv

        end_intv = Period("2006-12-31", "1w")
        i2 = period_range(end=end_intv, periods=10)
        assert len(i1) == len(i2)
        assert (i1 == i2).all()
        assert i1.freq == i2.freq

        msg = "start and end must have same freq"
        with pytest.raises(ValueError, match=msg):
            period_range(start=start, end=end_intv)

        end_intv = Period("2005-05-01", "B")
        i1 = period_range(start=start, end=end_intv)

        msg = ("Of the three parameters: start, end, and periods, exactly two "
               "must be specified")
        with pytest.raises(ValueError, match=msg):
            period_range(start=start)

        # infer freq from first element
        i2 = PeriodIndex([end_intv, Period("2005-05-05", "B")])
        assert len(i2) == 2
        assert i2[0] == end_intv

        i2 = PeriodIndex(np.array([end_intv, Period("2005-05-05", "B")]))
        assert len(i2) == 2
        assert i2[0] == end_intv

        # Mixed freq should fail
        vals = [end_intv, Period("2006-12-31", "w")]
        msg = r"Input has different freq=W-SUN from PeriodIndex\(freq=B\)"
        with pytest.raises(IncompatibleFrequency, match=msg):
            PeriodIndex(vals)
        vals = np.array(vals)
        with pytest.raises(ValueError, match=msg):
            PeriodIndex(vals)

    def test_fields(self):
        # year, month, day, hour, minute
        # second, weekofyear, week, dayofweek, weekday, dayofyear, quarter
        # qyear
        pi = period_range(freq="A", start="1/1/2001", end="12/1/2005")
        self._check_all_fields(pi)

        pi = period_range(freq="Q", start="1/1/2001", end="12/1/2002")
        self._check_all_fields(pi)

        pi = period_range(freq="M", start="1/1/2001", end="1/1/2002")
        self._check_all_fields(pi)

        pi = period_range(freq="D", start="12/1/2001", end="6/1/2001")
        self._check_all_fields(pi)

        pi = period_range(freq="B", start="12/1/2001", end="6/1/2001")
        self._check_all_fields(pi)

        pi = period_range(freq="H", start="12/31/2001", end="1/1/2002 23:00")
        self._check_all_fields(pi)

        pi = period_range(freq="Min", start="12/31/2001", end="1/1/2002 00:20")
        self._check_all_fields(pi)

        pi = period_range(freq="S",
                          start="12/31/2001 00:00:00",
                          end="12/31/2001 00:05:00")
        self._check_all_fields(pi)

        end_intv = Period("2006-12-31", "W")
        i1 = period_range(end=end_intv, periods=10)
        self._check_all_fields(i1)

    def _check_all_fields(self, periodindex):
        fields = [
            "year",
            "month",
            "day",
            "hour",
            "minute",
            "second",
            "weekofyear",
            "week",
            "dayofweek",
            "day_of_week",
            "dayofyear",
            "day_of_year",
            "quarter",
            "qyear",
            "days_in_month",
        ]

        periods = list(periodindex)
        s = Series(periodindex)

        for field in fields:
            field_idx = getattr(periodindex, field)
            assert len(periodindex) == len(field_idx)
            for x, val in zip(periods, field_idx):
                assert getattr(x, field) == val

            if len(s) == 0:
                continue

            field_s = getattr(s.dt, field)
            assert len(periodindex) == len(field_s)
            for x, val in zip(periods, field_s):
                assert getattr(x, field) == val

    def test_is_(self):
        create_index = lambda: period_range(
            freq="A", start="1/1/2001", end="12/1/2009")
        index = create_index()
        assert index.is_(index)
        assert not index.is_(create_index())
        assert index.is_(index.view())
        assert index.is_(index.view().view().view().view().view())
        assert index.view().is_(index)
        ind2 = index.view()
        index.name = "Apple"
        assert ind2.is_(index)
        assert not index.is_(index[:])
        assert not index.is_(index.asfreq("M"))
        assert not index.is_(index.asfreq("A"))

        assert not index.is_(index - 2)
        assert not index.is_(index - 0)

    def test_index_unique(self):
        idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq="A-JUN")
        expected = PeriodIndex([2000, 2007, 2009], freq="A-JUN")
        tm.assert_index_equal(idx.unique(), expected)
        assert idx.nunique() == 3

    def test_shift(self):
        # This is tested in test_arithmetic
        pass

    def test_negative_ordinals(self):
        Period(ordinal=-1000, freq="A")
        Period(ordinal=0, freq="A")

        idx1 = PeriodIndex(ordinal=[-1, 0, 1], freq="A")
        idx2 = PeriodIndex(ordinal=np.array([-1, 0, 1]), freq="A")
        tm.assert_index_equal(idx1, idx2)

    def test_pindex_fieldaccessor_nat(self):
        idx = PeriodIndex(["2011-01", "2011-02", "NaT", "2012-03", "2012-04"],
                          freq="D",
                          name="name")

        exp = Index([2011, 2011, -1, 2012, 2012], dtype=np.int64, name="name")
        tm.assert_index_equal(idx.year, exp)
        exp = Index([1, 2, -1, 3, 4], dtype=np.int64, name="name")
        tm.assert_index_equal(idx.month, exp)

    def test_pindex_multiples(self):
        expected = PeriodIndex(
            ["2011-01", "2011-03", "2011-05", "2011-07", "2011-09", "2011-11"],
            freq="2M",
        )

        pi = period_range(start="1/1/11", end="12/31/11", freq="2M")
        tm.assert_index_equal(pi, expected)
        assert pi.freq == offsets.MonthEnd(2)
        assert pi.freqstr == "2M"

        pi = period_range(start="1/1/11", periods=6, freq="2M")
        tm.assert_index_equal(pi, expected)
        assert pi.freq == offsets.MonthEnd(2)
        assert pi.freqstr == "2M"

    def test_iteration(self):
        index = period_range(start="1/1/10", periods=4, freq="B")

        result = list(index)
        assert isinstance(result[0], Period)
        assert result[0].freq == index.freq

    def test_with_multi_index(self):
        # #1705
        index = date_range("1/1/2012", periods=4, freq="12H")
        index_as_arrays = [index.to_period(freq="D"), index.hour]

        s = Series([0, 1, 2, 3], index_as_arrays)

        assert isinstance(s.index.levels[0], PeriodIndex)

        assert isinstance(s.index.values[0][0], Period)

    def test_pickle_freq(self):
        # GH2891
        prng = period_range("1/1/2011", "1/1/2012", freq="M")
        new_prng = tm.round_trip_pickle(prng)
        assert new_prng.freq == offsets.MonthEnd()
        assert new_prng.freqstr == "M"

    def test_map(self):
        # test_map_dictlike generally tests

        index = PeriodIndex([2005, 2007, 2009], freq="A")
        result = index.map(lambda x: x.ordinal)
        exp = Index([x.ordinal for x in index])
        tm.assert_index_equal(result, exp)

    def test_format_empty(self):
        # GH35712
        empty_idx = self._index_cls([], freq="A")
        assert empty_idx.format() == []
        assert empty_idx.format(name=True) == [""]
コード例 #12
0
class TestSeriesMisc:
    def test_append_preserve_name(self, datetime_series):
        result = datetime_series[:5].append(datetime_series[5:])
        assert result.name == datetime_series.name

    def test_getitem_preserve_name(self, datetime_series):
        result = datetime_series[datetime_series > 0]
        assert result.name == datetime_series.name

        result = datetime_series[[0, 2, 4]]
        assert result.name == datetime_series.name

        result = datetime_series[5:10]
        assert result.name == datetime_series.name

    def test_pickle_datetimes(self, datetime_series):
        unp_ts = self._pickle_roundtrip(datetime_series)
        tm.assert_series_equal(unp_ts, datetime_series)

    def test_pickle_strings(self, string_series):
        unp_series = self._pickle_roundtrip(string_series)
        tm.assert_series_equal(unp_series, string_series)

    def _pickle_roundtrip(self, obj):

        with tm.ensure_clean() as path:
            obj.to_pickle(path)
            unpickled = pd.read_pickle(path)
            return unpickled

    def test_sparse_accessor_updates_on_inplace(self):
        s = Series([1, 1, 2, 3], dtype="Sparse[int]")
        return_value = s.drop([0, 1], inplace=True)
        assert return_value is None
        assert s.sparse.density == 1.0

    def test_tab_completion(self):
        # GH 9910
        s = Series(list("abcd"))
        # Series of str values should have .str but not .dt/.cat in __dir__
        assert "str" in dir(s)
        assert "dt" not in dir(s)
        assert "cat" not in dir(s)

        # similarly for .dt
        s = Series(date_range("1/1/2015", periods=5))
        assert "dt" in dir(s)
        assert "str" not in dir(s)
        assert "cat" not in dir(s)

        # Similarly for .cat, but with the twist that str and dt should be
        # there if the categories are of that type first cat and str.
        s = Series(list("abbcd"), dtype="category")
        assert "cat" in dir(s)
        assert "str" in dir(s)  # as it is a string categorical
        assert "dt" not in dir(s)

        # similar to cat and str
        s = Series(date_range("1/1/2015", periods=5)).astype("category")
        assert "cat" in dir(s)
        assert "str" not in dir(s)
        assert "dt" in dir(s)  # as it is a datetime categorical

    def test_tab_completion_with_categorical(self):
        # test the tab completion display
        ok_for_cat = [
            "categories",
            "codes",
            "ordered",
            "set_categories",
            "add_categories",
            "remove_categories",
            "rename_categories",
            "reorder_categories",
            "remove_unused_categories",
            "as_ordered",
            "as_unordered",
        ]

        def get_dir(s):
            results = [r for r in s.cat.__dir__() if not r.startswith("_")]
            return sorted(set(results))

        s = Series(list("aabbcde")).astype("category")
        results = get_dir(s)
        tm.assert_almost_equal(results, sorted(set(ok_for_cat)))

    @pytest.mark.parametrize(
        "index",
        [
            tm.makeUnicodeIndex(10),
            tm.makeStringIndex(10),
            tm.makeCategoricalIndex(10),
            Index(["foo", "bar", "baz"] * 2),
            tm.makeDateIndex(10),
            tm.makePeriodIndex(10),
            tm.makeTimedeltaIndex(10),
            tm.makeIntIndex(10),
            tm.makeUIntIndex(10),
            tm.makeIntIndex(10),
            tm.makeFloatIndex(10),
            Index([True, False]),
            Index([f"a{i}" for i in range(101)]),
            pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
            pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
        ],
    )
    def test_index_tab_completion(self, index):
        # dir contains string-like values of the Index.
        s = Series(index=index, dtype=object)
        dir_s = dir(s)
        for i, x in enumerate(s.index.unique(level=0)):
            if i < 100:
                assert not isinstance(
                    x, str) or not x.isidentifier() or x in dir_s
            else:
                assert x not in dir_s

    def test_not_hashable(self):
        s_empty = Series(dtype=object)
        s = Series([1])
        msg = "'Series' objects are mutable, thus they cannot be hashed"
        with pytest.raises(TypeError, match=msg):
            hash(s_empty)
        with pytest.raises(TypeError, match=msg):
            hash(s)

    def test_contains(self, datetime_series):
        tm.assert_contains_all(datetime_series.index, datetime_series)

    def test_iter_datetimes(self, datetime_series):
        for i, val in enumerate(datetime_series):
            assert val == datetime_series[i]

    def test_iter_strings(self, string_series):
        for i, val in enumerate(string_series):
            assert val == string_series[i]

    def test_keys(self, datetime_series):
        # HACK: By doing this in two stages, we avoid 2to3 wrapping the call
        # to .keys() in a list()
        getkeys = datetime_series.keys
        assert getkeys() is datetime_series.index

    def test_values(self, datetime_series):
        tm.assert_almost_equal(datetime_series.values,
                               datetime_series,
                               check_dtype=False)

    def test_iteritems_datetimes(self, datetime_series):
        for idx, val in datetime_series.iteritems():
            assert val == datetime_series[idx]

    def test_iteritems_strings(self, string_series):
        for idx, val in string_series.iteritems():
            assert val == string_series[idx]

        # assert is lazy (generators don't define reverse, lists do)
        assert not hasattr(string_series.iteritems(), "reverse")

    def test_items_datetimes(self, datetime_series):
        for idx, val in datetime_series.items():
            assert val == datetime_series[idx]

    def test_items_strings(self, string_series):
        for idx, val in string_series.items():
            assert val == string_series[idx]

        # assert is lazy (generators don't define reverse, lists do)
        assert not hasattr(string_series.items(), "reverse")

    def test_raise_on_info(self):
        s = Series(np.random.randn(10))
        msg = "'Series' object has no attribute 'info'"
        with pytest.raises(AttributeError, match=msg):
            s.info()

    def test_axis_alias(self):
        s = Series([1, 2, np.nan])
        tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
        assert s.dropna().sum("rows") == 3
        assert s._get_axis_number("rows") == 0
        assert s._get_axis_name("rows") == "index"

    def test_class_axis(self):
        # https://github.com/pandas-dev/pandas/issues/18147
        # no exception and no empty docstring
        assert pydoc.getdoc(Series.index)

    def test_numpy_unique(self, datetime_series):
        # it works!
        np.unique(datetime_series)

    def test_item(self):
        s = Series([1])
        result = s.item()
        assert result == 1
        assert result == s.iloc[0]
        assert isinstance(result, int)  # i.e. not np.int64

        ser = Series([0.5], index=[3])
        result = ser.item()
        assert isinstance(result, float)
        assert result == 0.5

        ser = Series([1, 2])
        msg = "can only convert an array of size 1"
        with pytest.raises(ValueError, match=msg):
            ser.item()

        dti = pd.date_range("2016-01-01", periods=2)
        with pytest.raises(ValueError, match=msg):
            dti.item()
        with pytest.raises(ValueError, match=msg):
            Series(dti).item()

        val = dti[:1].item()
        assert isinstance(val, Timestamp)
        val = Series(dti)[:1].item()
        assert isinstance(val, Timestamp)

        tdi = dti - dti
        with pytest.raises(ValueError, match=msg):
            tdi.item()
        with pytest.raises(ValueError, match=msg):
            Series(tdi).item()

        val = tdi[:1].item()
        assert isinstance(val, Timedelta)
        val = Series(tdi)[:1].item()
        assert isinstance(val, Timedelta)

        # Case where ser[0] would not work
        ser = Series(dti, index=[5, 6])
        val = ser[:1].item()
        assert val == dti[0]

    def test_ndarray_compat(self):

        # test numpy compat with Series as sub-class of NDFrame
        tsdf = DataFrame(
            np.random.randn(1000, 3),
            columns=["A", "B", "C"],
            index=date_range("1/1/2000", periods=1000),
        )

        def f(x):
            return x[x.idxmax()]

        result = tsdf.apply(f)
        expected = tsdf.max()
        tm.assert_series_equal(result, expected)

        # using an ndarray like function
        s = Series(np.random.randn(10))
        result = Series(np.ones_like(s))
        expected = Series(1, index=range(10), dtype="float64")
        tm.assert_series_equal(result, expected)

        # ravel
        s = Series(np.random.randn(10))
        tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))

    def test_str_accessor_updates_on_inplace(self):
        s = Series(list("abc"))
        return_value = s.drop([0], inplace=True)
        assert return_value is None
        assert len(s.str.lower()) == 2

    def test_str_attribute(self):
        # GH9068
        methods = ["strip", "rstrip", "lstrip"]
        s = Series([" jack", "jill ", " jesse ", "frank"])
        for method in methods:
            expected = Series([getattr(str, method)(x) for x in s.values])
            tm.assert_series_equal(
                getattr(Series.str, method)(s.str), expected)

        # str accessor only valid with string values
        s = Series(range(5))
        with pytest.raises(AttributeError, match="only use .str accessor"):
            s.str.repeat(2)

    def test_empty_method(self):
        s_empty = Series(dtype=object)
        assert s_empty.empty

        s2 = Series(index=[1], dtype=object)
        for full_series in [Series([1]), s2]:
            assert not full_series.empty

    @async_mark()
    @td.check_file_leaks
    async def test_tab_complete_warning(self, ip):
        # https://github.com/pandas-dev/pandas/issues/16409
        pytest.importorskip("IPython", minversion="6.0.0")
        from IPython.core.completer import provisionalcompleter

        code = "import pandas as pd; s = Series(dtype=object)"
        await ip.run_code(code)

        # TODO: remove it when Ipython updates
        # GH 33567, jedi version raises Deprecation warning in Ipython
        import jedi

        if jedi.__version__ < "0.17.0":
            warning = tm.assert_produces_warning(None)
        else:
            warning = tm.assert_produces_warning(DeprecationWarning,
                                                 check_stacklevel=False)
        with warning:
            with provisionalcompleter("ignore"):
                list(ip.Completer.completions("s.", 1))

    def test_integer_series_size(self):
        # GH 25580
        s = Series(range(9))
        assert s.size == 9
        s = Series(range(9), dtype="Int64")
        assert s.size == 9

    def test_attrs(self):
        s = Series([0, 1], name="abc")
        assert s.attrs == {}
        s.attrs["version"] = 1
        result = s + 1
        assert result.attrs == {"version": 1}

    @pytest.mark.parametrize("allows_duplicate_labels", [True, False, None])
    def test_set_flags(self, allows_duplicate_labels):
        df = Series([1, 2])
        result = df.set_flags(allows_duplicate_labels=allows_duplicate_labels)
        if allows_duplicate_labels is None:
            # We don't update when it's not provided
            assert result.flags.allows_duplicate_labels is True
        else:
            assert result.flags.allows_duplicate_labels is allows_duplicate_labels

        # We made a copy
        assert df is not result
        # We didn't mutate df
        assert df.flags.allows_duplicate_labels is True

        # But we didn't copy data
        result.iloc[0] = 0
        assert df.iloc[0] == 0

        # Now we do copy.
        result = df.set_flags(copy=True,
                              allows_duplicate_labels=allows_duplicate_labels)
        result.iloc[0] = 10
        assert df.iloc[0] == 0