コード例 #1
0
ファイル: test_algos.py プロジェクト: DLlearn/pandas
    def test_large(self):

        s = pd.date_range('20000101', periods=2000000, freq='s').values
        result = algos.isin(s, s[0:2])
        expected = np.zeros(len(s), dtype=bool)
        expected[0] = True
        expected[1] = True
        tm.assert_numpy_array_equal(result, expected)
コード例 #2
0
ファイル: test_algos.py プロジェクト: DLlearn/pandas
    def test_basic(self):

        result = algos.isin([1, 2], [1])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(np.array([1, 2]), [1])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series([1, 2]), [1])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series([1, 2]), pd.Series([1]))
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(['a', 'b'], ['a'])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series(['a', 'b']), pd.Series(['a']))
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(['a', 'b'], [1])
        expected = np.array([False, False])
        tm.assert_numpy_array_equal(result, expected)

        arr = pd.date_range('20130101', periods=3).values
        result = algos.isin(arr, [arr[0]])
        expected = np.array([True, False, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(arr, arr[0:2])
        expected = np.array([True, True, False])
        tm.assert_numpy_array_equal(result, expected)

        arr = pd.timedelta_range('1 day', periods=3).values
        result = algos.isin(arr, [arr[0]])
        expected = np.array([True, False, False])
        tm.assert_numpy_array_equal(result, expected)
コード例 #3
0
ファイル: datetimes.py プロジェクト: changhiskhan/pandas
def _attempt_YYYYMMDD(arg, errors):
    """
    try to parse the YYYYMMDD/%Y%m%d format, try to deal with NaT-like,
    arg is a passed in as an object dtype, but could really be ints/strings
    with nan-like/or floats (e.g. with nan)

    Parameters
    ----------
    arg : passed value
    errors : 'raise','ignore','coerce'
    """

    def calc(carg):
        # calculate the actual result
        carg = carg.astype(object)
        parsed = parsing.try_parse_year_month_day(carg / 10000,
                                                  carg / 100 % 100,
                                                  carg % 100)
        return tslib.array_to_datetime(parsed, errors=errors)[0]

    def calc_with_mask(carg, mask):
        result = np.empty(carg.shape, dtype='M8[ns]')
        iresult = result.view('i8')
        iresult[~mask] = tslibs.iNaT

        masked_result = calc(carg[mask].astype(np.float64).astype(np.int64))
        result[mask] = masked_result.astype('M8[ns]')
        return result

    # try intlike / strings that are ints
    try:
        return calc(arg.astype(np.int64))
    except ValueError:
        pass

    # a float with actual np.nan
    try:
        carg = arg.astype(np.float64)
        return calc_with_mask(carg, notna(carg))
    except ValueError:
        pass

    # string with NaN-like
    try:
        mask = ~algorithms.isin(arg, list(tslib.nat_strings))
        return calc_with_mask(arg, mask)
    except ValueError:
        pass

    return None
コード例 #4
0
ファイル: datetimelike.py プロジェクト: giang12/pandas
    def isin(self, values):
        """
        Compute boolean array of whether each index value is found in the
        passed set of values

        Parameters
        ----------
        values : set or sequence of values

        Returns
        -------
        is_contained : ndarray (boolean dtype)
        """
        if not isinstance(values, type(self)):
            try:
                values = type(self)(values)
            except ValueError:
                return self.astype(object).isin(values)

        return algorithms.isin(self.asi8, values.asi8)
コード例 #5
0
    def isin(self, values):
        """
        Compute boolean array of whether each index value is found in the
        passed set of values.

        Parameters
        ----------
        values : set or sequence of values

        Returns
        -------
        is_contained : ndarray (boolean dtype)
        """
        if not isinstance(values, type(self)):
            try:
                values = type(self)(values)
            except ValueError:
                return self.astype(object).isin(values)

        return algorithms.isin(self.asi8, values.asi8)
コード例 #6
0
    def isin(self, values) -> BooleanArray:  # type: ignore[override]

        from pandas.core.arrays import BooleanArray

        # algorithms.isin will eventually convert values to an ndarray, so no extra
        # cost to doing it here first
        values_arr = np.asarray(values)
        result = isin(self._data, values_arr)

        if self._hasna:
            values_have_NA = is_object_dtype(values_arr.dtype) and any(
                val is self.dtype.na_value for val in values_arr
            )

            # For now, NA does not propagate so set result according to presence of NA,
            # see https://github.com/pandas-dev/pandas/pull/38379 for some discussion
            result[self._mask] = values_have_NA

        mask = np.zeros(self._data.shape, dtype=bool)
        return BooleanArray(result, mask, copy=False)
コード例 #7
0
def test_float_complex_int_are_equal_as_objects():
    values = ["a", 5, 5.0, 5.0 + 0j]
    comps = list(range(129))
    result = isin(values, comps)
    expected = np.array([False, True, True, True], dtype=np.bool_)
    tm.assert_numpy_array_equal(result, expected)
コード例 #8
0
    def test_invalid(self):

        self.assertRaises(TypeError, lambda: algos.isin(1, 1))
        self.assertRaises(TypeError, lambda: algos.isin(1, [1]))
        self.assertRaises(TypeError, lambda: algos.isin([1], 1))
コード例 #9
0
 def isin(self, values, level=None):
     if level is not None:
         self._validate_index_level(level)
     return algorithms.isin(np.array(self), values)
コード例 #10
0
ファイル: numeric.py プロジェクト: dalejung/pandas
 def isin(self, values, level=None):
     if level is not None:
         self._validate_index_level(level)
     return algorithms.isin(np.array(self), values)
コード例 #11
0
ファイル: base_parser.py プロジェクト: twoertwein/pandas
    def _convert_to_ndarrays(
        self,
        dct: Mapping,
        na_values,
        na_fvalues,
        verbose: bool = False,
        converters=None,
        dtypes=None,
    ):
        result = {}
        for c, values in dct.items():
            conv_f = None if converters is None else converters.get(c, None)
            if isinstance(dtypes, dict):
                cast_type = dtypes.get(c, None)
            else:
                # single dtype or None
                cast_type = dtypes

            if self.na_filter:
                col_na_values, col_na_fvalues = _get_na_values(
                    c, na_values, na_fvalues, self.keep_default_na)
            else:
                col_na_values, col_na_fvalues = set(), set()

            if c in self._parse_date_cols:
                # GH#26203 Do not convert columns which get converted to dates
                # but replace nans to ensure to_datetime works
                mask = algorithms.isin(values,
                                       set(col_na_values) | col_na_fvalues)
                np.putmask(values, mask, np.nan)
                result[c] = values
                continue

            if conv_f is not None:
                # conv_f applied to data before inference
                if cast_type is not None:
                    warnings.warn(
                        ("Both a converter and dtype were specified "
                         f"for column {c} - only the converter will be used."),
                        ParserWarning,
                        stacklevel=find_stack_level(),
                    )

                try:
                    values = lib.map_infer(values, conv_f)
                except ValueError:
                    # error: Argument 2 to "isin" has incompatible type "List[Any]";
                    # expected "Union[Union[ExtensionArray, ndarray], Index, Series]"
                    mask = algorithms.isin(
                        values,
                        list(na_values)  # type: ignore[arg-type]
                    ).view(np.uint8)
                    values = lib.map_infer_mask(values, conv_f, mask)

                cvals, na_count = self._infer_types(values,
                                                    set(col_na_values)
                                                    | col_na_fvalues,
                                                    try_num_bool=False)
            else:
                is_ea = is_extension_array_dtype(cast_type)
                is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type)
                # skip inference if specified dtype is object
                # or casting to an EA
                try_num_bool = not (cast_type and is_str_or_ea_dtype)

                # general type inference and conversion
                cvals, na_count = self._infer_types(
                    values,
                    set(col_na_values) | col_na_fvalues, try_num_bool)

                # type specified in dtype param or cast_type is an EA
                if cast_type and (not is_dtype_equal(cvals, cast_type)
                                  or is_extension_array_dtype(cast_type)):
                    if not is_ea and na_count > 0:
                        try:
                            if is_bool_dtype(cast_type):
                                raise ValueError(
                                    f"Bool column has NA values in column {c}")
                        except (AttributeError, TypeError):
                            # invalid input to is_bool_dtype
                            pass
                    cast_type = pandas_dtype(cast_type)
                    cvals = self._cast_types(cvals, cast_type, c)

            result[c] = cvals
            if verbose and na_count:
                print(f"Filled {na_count} NA values in column {c!s}")
        return result
コード例 #12
0
ファイル: test_algos.py プロジェクト: yizhiyong/pandas
    def test_basic(self):

        result = algos.isin([1, 2], [1])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(np.array([1, 2]), [1])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series([1, 2]), [1])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series([1, 2]), pd.Series([1]))
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series([1, 2]), set([1]))
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(['a', 'b'], ['a'])
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series(['a', 'b']), pd.Series(['a']))
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(pd.Series(['a', 'b']), set(['a']))
        expected = np.array([True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(['a', 'b'], [1])
        expected = np.array([False, False])
        tm.assert_numpy_array_equal(result, expected)

        arr = pd.date_range('20130101', periods=3).values
        result = algos.isin(arr, [arr[0]])
        expected = np.array([True, False, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(arr, arr[0:2])
        expected = np.array([True, True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(arr, set(arr[0:2]))
        expected = np.array([True, True, False])
        tm.assert_numpy_array_equal(result, expected)

        arr = pd.timedelta_range('1 day', periods=3).values
        result = algos.isin(arr, [arr[0]])
        expected = np.array([True, False, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(arr, arr[0:2])
        expected = np.array([True, True, False])
        tm.assert_numpy_array_equal(result, expected)

        result = algos.isin(arr, set(arr[0:2]))
        expected = np.array([True, True, False])
        tm.assert_numpy_array_equal(result, expected)
コード例 #13
0
 def _isin_addresses(self, other):
     """Check whether elements of self are present in other."""
     from pandas.core.algorithms import isin
     # TODO(factorize): replace this
     return isin(self, other)
コード例 #14
0
ファイル: base_parser.py プロジェクト: queantt/pandas
    def _convert_to_ndarrays(self,
                             dct,
                             na_values,
                             na_fvalues,
                             verbose=False,
                             converters=None,
                             dtypes=None):
        result = {}
        for c, values in dct.items():
            conv_f = None if converters is None else converters.get(c, None)
            if isinstance(dtypes, dict):
                cast_type = dtypes.get(c, None)
            else:
                # single dtype or None
                cast_type = dtypes

            if self.na_filter:
                col_na_values, col_na_fvalues = _get_na_values(
                    c, na_values, na_fvalues, self.keep_default_na)
            else:
                col_na_values, col_na_fvalues = set(), set()

            if conv_f is not None:
                # conv_f applied to data before inference
                if cast_type is not None:
                    warnings.warn(
                        ("Both a converter and dtype were specified "
                         f"for column {c} - only the converter will be used"),
                        ParserWarning,
                        stacklevel=7,
                    )

                try:
                    values = lib.map_infer(values, conv_f)
                except ValueError:
                    mask = algorithms.isin(values,
                                           list(na_values)).view(np.uint8)
                    values = lib.map_infer_mask(values, conv_f, mask)

                cvals, na_count = self._infer_types(values,
                                                    set(col_na_values)
                                                    | col_na_fvalues,
                                                    try_num_bool=False)
            else:
                is_ea = is_extension_array_dtype(cast_type)
                is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type)
                # skip inference if specified dtype is object
                # or casting to an EA
                try_num_bool = not (cast_type and is_str_or_ea_dtype)

                # general type inference and conversion
                cvals, na_count = self._infer_types(
                    values,
                    set(col_na_values) | col_na_fvalues, try_num_bool)

                # type specified in dtype param or cast_type is an EA
                if cast_type and (not is_dtype_equal(cvals, cast_type)
                                  or is_extension_array_dtype(cast_type)):
                    if not is_ea and na_count > 0:
                        try:
                            if is_bool_dtype(cast_type):
                                raise ValueError(
                                    f"Bool column has NA values in column {c}")
                        except (AttributeError, TypeError):
                            # invalid input to is_bool_dtype
                            pass
                    cast_type = pandas_dtype(cast_type)
                    cvals = self._cast_types(cvals, cast_type, c)

            result[c] = cvals
            if verbose and na_count:
                print(f"Filled {na_count} NA values in column {c!s}")
        return result