コード例 #1
0
def data_missing(allow_in_pandas, dtype):
    # For NumPy <1.16, np.array([np.nan, (1,)]) raises
    # ValueError: setting an array element with a sequence.
    if dtype.numpy_dtype == 'object':
        if _np_version_under1p16:
            raise pytest.skip("Skipping for NumPy <1.16")
        return PandasArray(np.array([np.nan, (1, )]))
    return PandasArray(np.array([np.nan, 1.0]))
コード例 #2
0
def data_missing_for_sorting(allow_in_pandas, dtype):
    """Length-3 array with a known sort order.

    This should be three items [B, NA, A] with
    A < B and NA missing.
    """
    if dtype.numpy_dtype == 'object':
        return PandasArray(np.array([(1, ), np.nan, (0, )]))
    return PandasArray(np.array([1, np.nan, 0]))
コード例 #3
0
def data_for_sorting(allow_in_pandas, dtype):
    """Length-3 array with a known sort order.

    This should be three items [B, C, A] with
    A < B < C
    """
    if dtype.numpy_dtype == 'object':
        # Use an empty tuple for first element, then remove,
        # to disable np.array's shape inference.
        return PandasArray(np.array([(), (2, ), (3, ), (1, )])[1:])
    return PandasArray(np.array([1, 2, 0]))
コード例 #4
0
ファイル: test_numpy.py プロジェクト: zhangtao010/pandas
def data_missing_for_sorting(allow_in_pandas):
    """Length-3 array with a known sort order.

    This should be three items [B, NA, A] with
    A < B and NA missing.
    """
    return PandasArray(np.array([1, np.nan, 0]))
コード例 #5
0
ファイル: test_numpy.py プロジェクト: zhangtao010/pandas
def data_for_sorting(allow_in_pandas):
    """Length-3 array with a known sort order.

    This should be three items [B, C, A] with
    A < B < C
    """
    return PandasArray(np.array([1, 2, 0]))
コード例 #6
0
ファイル: test_numpy.py プロジェクト: zhangtao010/pandas
def data_for_grouping(allow_in_pandas):
    """Data for factorization, grouping, and unique tests.

    Expected to be like [B, B, NA, NA, A, A, B, C]

    Where A < B < C and NA is missing
    """
    a, b, c = np.arange(3)
    return PandasArray(np.array([b, b, np.nan, np.nan, a, a, b, c]))
コード例 #7
0
def data_for_grouping(allow_in_pandas, dtype):
    """Data for factorization, grouping, and unique tests.

    Expected to be like [B, B, NA, NA, A, A, B, C]

    Where A < B < C and NA is missing
    """
    if dtype.numpy_dtype == 'object':
        a, b, c = (1, ), (2, ), (3, )
    else:
        a, b, c = np.arange(3)
    return PandasArray(np.array([b, b, np.nan, np.nan, a, a, b, c]))
コード例 #8
0
ファイル: base.py プロジェクト: ye-man/pandas
    def array(self) -> ExtensionArray:
        """
        The ExtensionArray of the data backing this Series or Index.

        .. versionadded:: 0.24.0

        Returns
        -------
        ExtensionArray
            An ExtensionArray of the values stored within. For extension
            types, this is the actual array. For NumPy native types, this
            is a thin (no copy) wrapper around :class:`numpy.ndarray`.

            ``.array`` differs ``.values`` which may require converting the
            data to a different form.

        See Also
        --------
        Index.to_numpy : Similar method that always returns a NumPy array.
        Series.to_numpy : Similar method that always returns a NumPy array.

        Notes
        -----
        This table lays out the different array types for each extension
        dtype within pandas.

        ================== =============================
        dtype              array type
        ================== =============================
        category           Categorical
        period             PeriodArray
        interval           IntervalArray
        IntegerNA          IntegerArray
        datetime64[ns, tz] DatetimeArray
        ================== =============================

        For any 3rd-party extension types, the array type will be an
        ExtensionArray.

        For all remaining dtypes ``.array`` will be a
        :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
        stored within. If you absolutely need a NumPy array (possibly with
        copying / coercing data), then use :meth:`Series.to_numpy` instead.

        Examples
        --------

        For regular NumPy types like int, and float, a PandasArray
        is returned.

        >>> pd.Series([1, 2, 3]).array
        <PandasArray>
        [1, 2, 3]
        Length: 3, dtype: int64

        For extension types, like Categorical, the actual ExtensionArray
        is returned

        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.array
        [a, b, a]
        Categories (2, object): [a, b]
        """
        # As a mixin, we depend on the mixing class having _values.
        # Special mixin syntax may be developed in the future:
        # https://github.com/python/typing/issues/246
        result = self._values  # type: ignore

        if is_datetime64_ns_dtype(result.dtype):
            from pandas.arrays import DatetimeArray
            result = DatetimeArray(result)
        elif is_timedelta64_ns_dtype(result.dtype):
            from pandas.arrays import TimedeltaArray
            result = TimedeltaArray(result)

        elif not is_extension_array_dtype(result.dtype):
            from pandas.core.arrays.numpy_ import PandasArray
            result = PandasArray(result)

        return result
コード例 #9
0
def data(allow_in_pandas, dtype):
    if dtype.numpy_dtype == 'object':
        return pd.Series([(i, ) for i in range(100)]).array
    return PandasArray(np.arange(1, 101, dtype=dtype._dtype))
コード例 #10
0
ファイル: test_numpy.py プロジェクト: zhangtao010/pandas
def data_missing(allow_in_pandas):
    return PandasArray(np.array([np.nan, 1.0]))
コード例 #11
0
ファイル: test_numpy.py プロジェクト: zhangtao010/pandas
def data(allow_in_pandas, dtype):
    return PandasArray(np.arange(1, 101, dtype=dtype._dtype))
コード例 #12
0
def data_missing(allow_in_pandas, dtype):
    if dtype.numpy_dtype == "object":
        return PandasArray(np.array([np.nan, (1, )], dtype=object))
    return PandasArray(np.array([np.nan, 1.0]))
コード例 #13
0
    def array(self):
        # type: () -> ExtensionArray
        """
        The ExtensionArray of the data backing this Series or Index.

        .. versionadded:: 0.24.0

        Returns
        -------
        array : ExtensionArray
            An ExtensionArray of the values stored within. For extension
            types, this is the actual array. For NumPy native types, this
            is a thin (no copy) wrapper around :class:`numpy.ndarray`.

            ``.array`` differs ``.values`` which may require converting the
            data to a different form.

        See Also
        --------
        Index.to_numpy : Similar method that always returns a NumPy array.
        Series.to_numpy : Similar method that always returns a NumPy array.

        Notes
        -----
        This table lays out the different array types for each extension
        dtype within pandas.

        ================== =============================
        dtype              array type
        ================== =============================
        category           Categorical
        period             PeriodArray
        interval           IntervalArray
        IntegerNA          IntegerArray
        datetime64[ns, tz] DatetimeArray
        ================== =============================

        For any 3rd-party extension types, the array type will be an
        ExtensionArray.

        For all remaining dtypes ``.array`` will be a
        :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
        stored within. If you absolutely need a NumPy array (possibly with
        copying / coercing data), then use :meth:`Series.to_numpy` instead.

        Examples
        --------

        For regular NumPy types like int, and float, a PandasArray
        is returned.

        >>> pd.Series([1, 2, 3]).array
        <PandasArray>
        [1, 2, 3]
        Length: 3, dtype: int64

        For extension types, like Categorical, the actual ExtensionArray
        is returned

        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.array
        [a, b, a]
        Categories (2, object): [a, b]
        """
        result = self._values

        # TODO(DatetimeArray): remvoe the second clause.
        if (not is_extension_array_dtype(result.dtype)
                and not is_datetime64tz_dtype(result.dtype)):
            from pandas.core.arrays.numpy_ import PandasArray

            result = PandasArray(result)
        return result