コード例 #1
0
ファイル: numeric.py プロジェクト: dalejung/pandas
 def _convert_arr_indexer(self, keyarr):
     # Cast the indexer to uint64 if possible so
     # that the values returned from indexing are
     # also uint64.
     keyarr = com.asarray_tuplesafe(keyarr)
     if is_integer_dtype(keyarr):
         return com.asarray_tuplesafe(keyarr, dtype=np.uint64)
     return keyarr
コード例 #2
0
ファイル: category.py プロジェクト: scari/pandas
    def _convert_arr_indexer(self, keyarr):
        keyarr = com.asarray_tuplesafe(keyarr)

        if self.categories._defer_to_indexing:
            return keyarr

        return self._shallow_copy(keyarr)
コード例 #3
0
ファイル: test_construction.py プロジェクト: pydata/pandas
    def get_kwargs_from_breaks(self, breaks, closed='right'):
        """
        converts intervals in breaks format to a dictionary of kwargs to
        specific to the format expected by IntervalIndex.from_tuples
        """
        if len(breaks) == 0:
            return {'data': breaks}

        tuples = list(zip(breaks[:-1], breaks[1:]))
        if isinstance(breaks, (list, tuple)):
            return {'data': tuples}
        elif is_categorical_dtype(breaks):
            return {'data': breaks._constructor(tuples)}
        return {'data': com.asarray_tuplesafe(tuples)}
コード例 #4
0
ファイル: test_interval.py プロジェクト: sinhrks/pandas
    def test_to_tuples_na(self, tuples, na_tuple):
        # GH 18756
        idx = IntervalIndex.from_tuples(tuples)
        result = idx.to_tuples(na_tuple=na_tuple)

        # check the non-NA portion
        expected_notna = Index(com.asarray_tuplesafe(tuples[:-1]))
        result_notna = result[:-1]
        tm.assert_index_equal(result_notna, expected_notna)

        # check the NA portion
        result_na = result[-1]
        if na_tuple:
            assert isinstance(result_na, tuple)
            assert len(result_na) == 2
            assert all(isna(x) for x in result_na)
        else:
            assert isna(result_na)
コード例 #5
0
ファイル: _converter.py プロジェクト: bwignall/pandas
    def _convert_1d(values, unit, axis):
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, np.datetime64):
            return _dt_to_float_ordinal(tslibs.Timestamp(values))
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (is_integer(values) or is_float(values)):
            return values
        elif isinstance(values, str):
            return try_parse(values)
        elif isinstance(values, (list, tuple, np.ndarray, Index, ABCSeries)):
            if isinstance(values, ABCSeries):
                # https://github.com/matplotlib/matplotlib/issues/11391
                # Series was skipped. Convert to DatetimeIndex to get asi8
                values = Index(values)
            if isinstance(values, Index):
                values = values.values
            if not isinstance(values, np.ndarray):
                values = com.asarray_tuplesafe(values)

            if is_integer_dtype(values) or is_float_dtype(values):
                return values

            try:
                values = tools.to_datetime(values)
                if isinstance(values, Index):
                    values = _dt_to_float_ordinal(values)
                else:
                    values = [_dt_to_float_ordinal(x) for x in values]
            except Exception:
                values = _dt_to_float_ordinal(values)

        return values
コード例 #6
0
ファイル: test_sorting.py プロジェクト: jakevdp/pandas
    def test_int64_overflow(self):

        B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500)))
        A = np.arange(2500)
        df = DataFrame({'A': A,
                        'B': B,
                        'C': A,
                        'D': B,
                        'E': A,
                        'F': B,
                        'G': A,
                        'H': B,
                        'values': np.random.randn(2500)})

        lg = df.groupby(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'])
        rg = df.groupby(['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A'])

        left = lg.sum()['values']
        right = rg.sum()['values']

        exp_index, _ = left.index.sortlevel()
        tm.assert_index_equal(left.index, exp_index)

        exp_index, _ = right.index.sortlevel(0)
        tm.assert_index_equal(right.index, exp_index)

        tups = list(map(tuple, df[['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'
                                   ]].values))
        tups = com.asarray_tuplesafe(tups)

        expected = df.groupby(tups).sum()['values']

        for k, v in compat.iteritems(expected):
            assert left[k] == right[k[::-1]]
            assert left[k] == v
        assert len(left) == len(right)
コード例 #7
0
ファイル: grouper.py プロジェクト: forking-repos/pandas
def _get_grouper(obj, key=None, axis=0, level=None, sort=True,
                 observed=False, mutated=False, validate=True):
    """
    create and return a BaseGrouper, which is an internal
    mapping of how to create the grouper indexers.
    This may be composed of multiple Grouping objects, indicating
    multiple groupers

    Groupers are ultimately index mappings. They can originate as:
    index mappings, keys to columns, functions, or Groupers

    Groupers enable local references to axis,level,sort, while
    the passed in axis, level, and sort are 'global'.

    This routine tries to figure out what the passing in references
    are and then creates a Grouping for each one, combined into
    a BaseGrouper.

    If observed & we have a categorical grouper, only show the observed
    values

    If validate, then check for key/level overlaps

    """
    group_axis = obj._get_axis(axis)

    # validate that the passed single level is compatible with the passed
    # axis of the object
    if level is not None:
        # TODO: These if-block and else-block are almost same.
        # MultiIndex instance check is removable, but it seems that there are
        # some processes only for non-MultiIndex in else-block,
        # eg. `obj.index.name != level`. We have to consider carefully whether
        # these are applicable for MultiIndex. Even if these are applicable,
        # we need to check if it makes no side effect to subsequent processes
        # on the outside of this condition.
        # (GH 17621)
        if isinstance(group_axis, MultiIndex):
            if is_list_like(level) and len(level) == 1:
                level = level[0]

            if key is None and is_scalar(level):
                # Get the level values from group_axis
                key = group_axis.get_level_values(level)
                level = None

        else:
            # allow level to be a length-one list-like object
            # (e.g., level=[0])
            # GH 13901
            if is_list_like(level):
                nlevels = len(level)
                if nlevels == 1:
                    level = level[0]
                elif nlevels == 0:
                    raise ValueError('No group keys passed!')
                else:
                    raise ValueError('multiple levels only valid with '
                                     'MultiIndex')

            if isinstance(level, str):
                if obj.index.name != level:
                    raise ValueError('level name {} is not the name of the '
                                     'index'.format(level))
            elif level > 0 or level < -1:
                raise ValueError(
                    'level > 0 or level < -1 only valid with MultiIndex')

            # NOTE: `group_axis` and `group_axis.get_level_values(level)`
            # are same in this section.
            level = None
            key = group_axis

    # a passed-in Grouper, directly convert
    if isinstance(key, Grouper):
        binner, grouper, obj = key._get_grouper(obj, validate=False)
        if key.key is None:
            return grouper, [], obj
        else:
            return grouper, {key.key}, obj

    # already have a BaseGrouper, just return it
    elif isinstance(key, BaseGrouper):
        return key, [], obj

    # In the future, a tuple key will always mean an actual key,
    # not an iterable of keys. In the meantime, we attempt to provide
    # a warning. We can assume that the user wanted a list of keys when
    # the key is not in the index. We just have to be careful with
    # unhashble elements of `key`. Any unhashable elements implies that
    # they wanted a list of keys.
    # https://github.com/pandas-dev/pandas/issues/18314
    is_tuple = isinstance(key, tuple)
    all_hashable = is_tuple and is_hashable(key)

    if is_tuple:
        if ((all_hashable and key not in obj and set(key).issubset(obj))
                or not all_hashable):
            # column names ('a', 'b') -> ['a', 'b']
            # arrays like (a, b) -> [a, b]
            msg = ("Interpreting tuple 'by' as a list of keys, rather than "
                   "a single key. Use 'by=[...]' instead of 'by=(...)'. In "
                   "the future, a tuple will always mean a single key.")
            warnings.warn(msg, FutureWarning, stacklevel=5)
            key = list(key)

    if not isinstance(key, list):
        keys = [key]
        match_axis_length = False
    else:
        keys = key
        match_axis_length = len(keys) == len(group_axis)

    # what are we after, exactly?
    any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
    any_groupers = any(isinstance(g, Grouper) for g in keys)
    any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray))
                        for g in keys)

    # is this an index replacement?
    if (not any_callable and not any_arraylike and not any_groupers and
            match_axis_length and level is None):
        if isinstance(obj, DataFrame):
            all_in_columns_index = all(g in obj.columns or g in
                                       obj.index.names for g in keys)
        elif isinstance(obj, Series):
            all_in_columns_index = all(g in obj.index.names for g in keys)

        if not all_in_columns_index:
            keys = [com.asarray_tuplesafe(keys)]

    if isinstance(level, (tuple, list)):
        if key is None:
            keys = [None] * len(level)
        levels = level
    else:
        levels = [level] * len(keys)

    groupings = []
    exclusions = []

    # if the actual grouper should be obj[key]
    def is_in_axis(key):
        if not _is_label_like(key):
            try:
                obj._data.items.get_loc(key)
            except Exception:
                return False

        return True

    # if the grouper is obj[name]
    def is_in_obj(gpr):
        try:
            return id(gpr) == id(obj[gpr.name])
        except Exception:
            return False

    for i, (gpr, level) in enumerate(zip(keys, levels)):

        if is_in_obj(gpr):  # df.groupby(df['name'])
            in_axis, name = True, gpr.name
            exclusions.append(name)

        elif is_in_axis(gpr):  # df.groupby('name')
            if gpr in obj:
                if validate:
                    obj._check_label_or_level_ambiguity(gpr)
                in_axis, name, gpr = True, gpr, obj[gpr]
                exclusions.append(name)
            elif obj._is_level_reference(gpr):
                in_axis, name, level, gpr = False, None, gpr, None
            else:
                raise KeyError(gpr)
        elif isinstance(gpr, Grouper) and gpr.key is not None:
            # Add key to exclusions
            exclusions.append(gpr.key)
            in_axis, name = False, None
        else:
            in_axis, name = False, None

        if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]:
            raise ValueError(
                ("Length of grouper ({len_gpr}) and axis ({len_axis})"
                 " must be same length"
                 .format(len_gpr=len(gpr), len_axis=obj.shape[axis])))

        # create the Grouping
        # allow us to passing the actual Grouping as the gpr
        ping = (Grouping(group_axis,
                         gpr,
                         obj=obj,
                         name=name,
                         level=level,
                         sort=sort,
                         observed=observed,
                         in_axis=in_axis)
                if not isinstance(gpr, Grouping) else gpr)

        groupings.append(ping)

    if len(groupings) == 0:
        raise ValueError('No group keys passed!')

    # create the internals grouper
    grouper = BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated)
    return grouper, exclusions, obj
コード例 #8
0
def sanitize_array(data,
                   index,
                   dtype=None,
                   copy=False,
                   raise_cast_failure=False):
    """
    Sanitize input data to an ndarray, copy if specified, coerce to the
    dtype if specified.
    """

    if dtype is not None:
        dtype = pandas_dtype(dtype)

    if isinstance(data, ma.MaskedArray):
        mask = ma.getmaskarray(data)
        if mask.any():
            data, fill_value = maybe_upcast(data, copy=True)
            data.soften_mask()  # set hardmask False if it was True
            data[mask] = fill_value
        else:
            data = data.copy()

    # GH#846
    if isinstance(data, (np.ndarray, Index, ABCSeries)):

        if dtype is not None:
            subarr = np.array(data, copy=False)

            # possibility of nan -> garbage
            if is_float_dtype(data.dtype) and is_integer_dtype(dtype):
                if not isna(data).any():
                    subarr = _try_cast(data, True, dtype, copy,
                                       raise_cast_failure)
                elif copy:
                    subarr = data.copy()
            else:
                subarr = _try_cast(data, True, dtype, copy, raise_cast_failure)
        elif isinstance(data, Index):
            # don't coerce Index types
            # e.g. indexes can have different conversions (so don't fast path
            # them)
            # GH#6140
            subarr = sanitize_index(data, index, copy=copy)
        else:

            # we will try to copy be-definition here
            subarr = _try_cast(data, True, dtype, copy, raise_cast_failure)

    elif isinstance(data, ExtensionArray):
        if isinstance(data, ABCPandasArray):
            # We don't want to let people put our PandasArray wrapper
            # (the output of Series/Index.array), into a Series. So
            # we explicitly unwrap it here.
            subarr = data.to_numpy()
        else:
            subarr = data

        # everything else in this block must also handle ndarray's,
        # becuase we've unwrapped PandasArray into an ndarray.

        if dtype is not None:
            subarr = data.astype(dtype)

        if copy:
            subarr = data.copy()
        return subarr

    elif isinstance(data, (list, tuple)) and len(data) > 0:
        if dtype is not None:
            try:
                subarr = _try_cast(data, False, dtype, copy,
                                   raise_cast_failure)
            except Exception:
                if raise_cast_failure:  # pragma: no cover
                    raise
                subarr = np.array(data, dtype=object, copy=copy)
                subarr = lib.maybe_convert_objects(subarr)

        else:
            subarr = maybe_convert_platform(data)

        subarr = maybe_cast_to_datetime(subarr, dtype)

    elif isinstance(data, range):
        # GH#16804
        start, stop, step = get_range_parameters(data)
        arr = np.arange(start, stop, step, dtype='int64')
        subarr = _try_cast(arr, False, dtype, copy, raise_cast_failure)
    else:
        subarr = _try_cast(data, False, dtype, copy, raise_cast_failure)

    # scalar like, GH
    if getattr(subarr, 'ndim', 0) == 0:
        if isinstance(data, list):  # pragma: no cover
            subarr = np.array(data, dtype=object)
        elif index is not None:
            value = data

            # figure out the dtype from the value (upcast if necessary)
            if dtype is None:
                dtype, value = infer_dtype_from_scalar(value)
            else:
                # need to possibly convert the value here
                value = maybe_cast_to_datetime(value, dtype)

            subarr = construct_1d_arraylike_from_scalar(
                value, len(index), dtype)

        else:
            return subarr.item()

    # the result that we want
    elif subarr.ndim == 1:
        if index is not None:

            # a 1-element ndarray
            if len(subarr) != len(index) and len(subarr) == 1:
                subarr = construct_1d_arraylike_from_scalar(
                    subarr[0], len(index), subarr.dtype)

    elif subarr.ndim > 1:
        if isinstance(data, np.ndarray):
            raise Exception('Data must be 1-dimensional')
        else:
            subarr = com.asarray_tuplesafe(data, dtype=dtype)

    # This is to prevent mixed-type Series getting all casted to
    # NumPy string type, e.g. NaN --> '-1#IND'.
    if issubclass(subarr.dtype.type, compat.string_types):
        # GH#16605
        # If not empty convert the data to dtype
        # GH#19853: If data is a scalar, subarr has already the result
        if not lib.is_scalar(data):
            if not np.all(isna(data)):
                data = np.array(data, dtype=dtype, copy=False)
            subarr = np.array(data, dtype=object, copy=copy)

    if is_object_dtype(subarr.dtype) and dtype != 'object':
        inferred = lib.infer_dtype(subarr, skipna=False)
        if inferred == 'period':
            try:
                subarr = period_array(subarr)
            except IncompatibleFrequency:
                pass

    return subarr
コード例 #9
0
    def __init__(self,
                 index,
                 grouper=None,
                 obj=None,
                 name=None,
                 level=None,
                 sort=True,
                 observed=False,
                 in_axis=False):

        self.name = name
        self.level = level
        self.grouper = _convert_grouper(index, grouper)
        self.all_grouper = None
        self.index = index
        self.sort = sort
        self.obj = obj
        self.observed = observed
        self.in_axis = in_axis

        # right place for this?
        if isinstance(grouper, (Series, Index)) and name is None:
            self.name = grouper.name

        if isinstance(grouper, MultiIndex):
            self.grouper = grouper.values

        # we have a single grouper which may be a myriad of things,
        # some of which are dependent on the passing in level

        if level is not None:
            if not isinstance(level, int):
                if level not in index.names:
                    raise AssertionError('Level %s not in index' % str(level))
                level = index.names.index(level)

            if self.name is None:
                self.name = index.names[level]

            self.grouper, self._labels, self._group_index = \
                index._get_grouper_for_level(self.grouper, level)

        # a passed Grouper like, directly get the grouper in the same way
        # as single grouper groupby, use the group_info to get labels
        elif isinstance(self.grouper, Grouper):
            # get the new grouper; we already have disambiguated
            # what key/level refer to exactly, don't need to
            # check again as we have by this point converted these
            # to an actual value (rather than a pd.Grouper)
            _, grouper, _ = self.grouper._get_grouper(self.obj, validate=False)
            if self.name is None:
                self.name = grouper.result_index.name
            self.obj = self.grouper.obj
            self.grouper = grouper

        else:
            if self.grouper is None and self.name is not None:
                self.grouper = self.obj[self.name]

            elif isinstance(self.grouper, (list, tuple)):
                self.grouper = com.asarray_tuplesafe(self.grouper)

            # a passed Categorical
            elif is_categorical_dtype(self.grouper):

                from pandas.core.groupby.categorical import recode_for_groupby
                self.grouper, self.all_grouper = recode_for_groupby(
                    self.grouper, self.sort, observed)
                categories = self.grouper.categories

                # we make a CategoricalIndex out of the cat grouper
                # preserving the categories / ordered attributes
                self._labels = self.grouper.codes
                if observed:
                    codes = algorithms.unique1d(self.grouper.codes)
                else:
                    codes = np.arange(len(categories))

                self._group_index = CategoricalIndex(
                    Categorical.from_codes(codes=codes,
                                           categories=categories,
                                           ordered=self.grouper.ordered))

            # we are done
            if isinstance(self.grouper, Grouping):
                self.grouper = self.grouper.grouper

            # no level passed
            elif not isinstance(self.grouper,
                                (Series, Index, ExtensionArray, np.ndarray)):
                if getattr(self.grouper, 'ndim', 1) != 1:
                    t = self.name or str(type(self.grouper))
                    raise ValueError("Grouper for '%s' not 1-dimensional" % t)
                self.grouper = self.index.map(self.grouper)
                if not (hasattr(self.grouper, "__len__")
                        and len(self.grouper) == len(self.index)):
                    errmsg = ('Grouper result violates len(labels) == '
                              'len(data)\nresult: %s' %
                              pprint_thing(self.grouper))
                    self.grouper = None  # Try for sanity
                    raise AssertionError(errmsg)

        # if we have a date/time-like grouper, make sure that we have
        # Timestamps like
        if getattr(self.grouper, 'dtype', None) is not None:
            if is_datetime64_dtype(self.grouper):
                from pandas import to_datetime
                self.grouper = to_datetime(self.grouper)
            elif is_timedelta64_dtype(self.grouper):
                from pandas import to_timedelta
                self.grouper = to_timedelta(self.grouper)
コード例 #10
0
ファイル: grouper.py プロジェクト: forking-repos/pandas
    def __init__(self, index, grouper=None, obj=None, name=None, level=None,
                 sort=True, observed=False, in_axis=False):

        self.name = name
        self.level = level
        self.grouper = _convert_grouper(index, grouper)
        self.all_grouper = None
        self.index = index
        self.sort = sort
        self.obj = obj
        self.observed = observed
        self.in_axis = in_axis

        # right place for this?
        if isinstance(grouper, (Series, Index)) and name is None:
            self.name = grouper.name

        if isinstance(grouper, MultiIndex):
            self.grouper = grouper.values

        # we have a single grouper which may be a myriad of things,
        # some of which are dependent on the passing in level

        if level is not None:
            if not isinstance(level, int):
                if level not in index.names:
                    raise AssertionError('Level {} not in index'.format(level))
                level = index.names.index(level)

            if self.name is None:
                self.name = index.names[level]

            self.grouper, self._labels, self._group_index = \
                index._get_grouper_for_level(self.grouper, level)

        # a passed Grouper like, directly get the grouper in the same way
        # as single grouper groupby, use the group_info to get labels
        elif isinstance(self.grouper, Grouper):
            # get the new grouper; we already have disambiguated
            # what key/level refer to exactly, don't need to
            # check again as we have by this point converted these
            # to an actual value (rather than a pd.Grouper)
            _, grouper, _ = self.grouper._get_grouper(self.obj, validate=False)
            if self.name is None:
                self.name = grouper.result_index.name
            self.obj = self.grouper.obj
            self.grouper = grouper._get_grouper()

        else:
            if self.grouper is None and self.name is not None:
                self.grouper = self.obj[self.name]

            elif isinstance(self.grouper, (list, tuple)):
                self.grouper = com.asarray_tuplesafe(self.grouper)

            # a passed Categorical
            elif is_categorical_dtype(self.grouper):

                from pandas.core.groupby.categorical import recode_for_groupby
                self.grouper, self.all_grouper = recode_for_groupby(
                    self.grouper, self.sort, observed)
                categories = self.grouper.categories

                # we make a CategoricalIndex out of the cat grouper
                # preserving the categories / ordered attributes
                self._labels = self.grouper.codes
                if observed:
                    codes = algorithms.unique1d(self.grouper.codes)
                    codes = codes[codes != -1]
                    if sort or self.grouper.ordered:
                        codes = np.sort(codes)
                else:
                    codes = np.arange(len(categories))

                self._group_index = CategoricalIndex(
                    Categorical.from_codes(
                        codes=codes,
                        categories=categories,
                        ordered=self.grouper.ordered))

            # we are done
            if isinstance(self.grouper, Grouping):
                self.grouper = self.grouper.grouper

            # no level passed
            elif not isinstance(self.grouper,
                                (Series, Index, ExtensionArray, np.ndarray)):
                if getattr(self.grouper, 'ndim', 1) != 1:
                    t = self.name or str(type(self.grouper))
                    raise ValueError(
                        "Grouper for '{}' not 1-dimensional".format(t))
                self.grouper = self.index.map(self.grouper)
                if not (hasattr(self.grouper, "__len__") and
                        len(self.grouper) == len(self.index)):
                    errmsg = ('Grouper result violates len(labels) == '
                              'len(data)\nresult: %s' %
                              pprint_thing(self.grouper))
                    self.grouper = None  # Try for sanity
                    raise AssertionError(errmsg)

        # if we have a date/time-like grouper, make sure that we have
        # Timestamps like
        if getattr(self.grouper, 'dtype', None) is not None:
            if is_datetime64_dtype(self.grouper):
                from pandas import to_datetime
                self.grouper = to_datetime(self.grouper)
            elif is_timedelta64_dtype(self.grouper):
                from pandas import to_timedelta
                self.grouper = to_timedelta(self.grouper)
コード例 #11
0
ファイル: pandas_test.py プロジェクト: urishab/py2exe
df = pd.DataFrame({
    "A": A,
    "B": B,
    "C": A,
    "D": B,
    "E": A,
    "F": B,
    "G": A,
    "H": B,
    "values": G,
})

lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"])
rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"])

left = lg.sum()["values"]
right = rg.sum()["values"]

exp_index, _ = left.index.sortlevel()
exp_index, _ = right.index.sortlevel(0)

tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values))
tups = com.asarray_tuplesafe(tups)

expected = df.groupby(tups).sum()["values"]

for k, v in expected.items():
    assert left[k] == right[k[::-1]]
    assert left[k] == v
assert len(left) == len(right)
コード例 #12
0
ファイル: construction.py プロジェクト: voigtjessica/pandas
def sanitize_array(data,
                   index,
                   dtype=None,
                   copy=False,
                   raise_cast_failure=False):
    """
    Sanitize input data to an ndarray, copy if specified, coerce to the
    dtype if specified.
    """
    if dtype is not None:
        dtype = pandas_dtype(dtype)

    if isinstance(data, ma.MaskedArray):
        mask = ma.getmaskarray(data)
        if mask.any():
            data, fill_value = maybe_upcast(data, copy=True)
            data.soften_mask()  # set hardmask False if it was True
            data[mask] = fill_value
        else:
            data = data.copy()

    # extract ndarray or ExtensionArray, ensure we have no PandasArray
    data = extract_array(data, extract_numpy=True)

    # GH#846
    if isinstance(data, np.ndarray):

        if (dtype is not None and is_float_dtype(data.dtype)
                and is_integer_dtype(dtype)):
            # possibility of nan -> garbage
            try:
                subarr = _try_cast(data, dtype, copy, True)
            except ValueError:
                if copy:
                    subarr = data.copy()
                else:
                    subarr = np.array(data, copy=False)
        else:
            # we will try to copy be-definition here
            subarr = _try_cast(data, dtype, copy, raise_cast_failure)

    elif isinstance(data, ExtensionArray):
        # it is already ensured above this is not a PandasArray
        subarr = data

        if dtype is not None:
            subarr = subarr.astype(dtype, copy=copy)
        elif copy:
            subarr = subarr.copy()
        return subarr

    elif isinstance(data, (list, tuple)) and len(data) > 0:
        if dtype is not None:
            try:
                subarr = _try_cast(data, dtype, copy, raise_cast_failure)
            except Exception:
                if raise_cast_failure:  # pragma: no cover
                    raise
                subarr = np.array(data, dtype=object, copy=copy)
                subarr = lib.maybe_convert_objects(subarr)

        else:
            subarr = maybe_convert_platform(data)

        subarr = maybe_cast_to_datetime(subarr, dtype)

    elif isinstance(data, range):
        # GH#16804
        arr = np.arange(data.start, data.stop, data.step, dtype='int64')
        subarr = _try_cast(arr, dtype, copy, raise_cast_failure)
    else:
        subarr = _try_cast(data, dtype, copy, raise_cast_failure)

    # scalar like, GH
    if getattr(subarr, 'ndim', 0) == 0:
        if isinstance(data, list):  # pragma: no cover
            subarr = np.array(data, dtype=object)
        elif index is not None:
            value = data

            # figure out the dtype from the value (upcast if necessary)
            if dtype is None:
                dtype, value = infer_dtype_from_scalar(value)
            else:
                # need to possibly convert the value here
                value = maybe_cast_to_datetime(value, dtype)

            subarr = construct_1d_arraylike_from_scalar(
                value, len(index), dtype)

        else:
            return subarr.item()

    # the result that we want
    elif subarr.ndim == 1:
        if index is not None:

            # a 1-element ndarray
            if len(subarr) != len(index) and len(subarr) == 1:
                subarr = construct_1d_arraylike_from_scalar(
                    subarr[0], len(index), subarr.dtype)

    elif subarr.ndim > 1:
        if isinstance(data, np.ndarray):
            raise Exception('Data must be 1-dimensional')
        else:
            subarr = com.asarray_tuplesafe(data, dtype=dtype)

    # This is to prevent mixed-type Series getting all casted to
    # NumPy string type, e.g. NaN --> '-1#IND'.
    if issubclass(subarr.dtype.type, str):
        # GH#16605
        # If not empty convert the data to dtype
        # GH#19853: If data is a scalar, subarr has already the result
        if not lib.is_scalar(data):
            if not np.all(isna(data)):
                data = np.array(data, dtype=dtype, copy=False)
            subarr = np.array(data, dtype=object, copy=copy)

    if (not (is_extension_array_dtype(subarr.dtype)
             or is_extension_array_dtype(dtype))
            and is_object_dtype(subarr.dtype) and not is_object_dtype(dtype)):
        inferred = lib.infer_dtype(subarr, skipna=False)
        if inferred == 'period':
            try:
                subarr = period_array(subarr)
            except IncompatibleFrequency:
                pass

    return subarr
コード例 #13
0
 def test_to_tuples(self, tuples):
     # GH 18756
     idx = IntervalIndex.from_tuples(tuples)
     result = idx.to_tuples()
     expected = Index(com.asarray_tuplesafe(tuples))
     tm.assert_index_equal(result, expected)
コード例 #14
0
ファイル: test_interval.py プロジェクト: sinhrks/pandas
 def test_to_tuples(self, tuples):
     # GH 18756
     idx = IntervalIndex.from_tuples(tuples)
     result = idx.to_tuples()
     expected = Index(com.asarray_tuplesafe(tuples))
     tm.assert_index_equal(result, expected)
コード例 #15
0
    def __init__(
        self,
        index: Index,
        grouper=None,
        obj: Optional[FrameOrSeries] = None,
        name=None,
        level=None,
        sort: bool = True,
        observed: bool = False,
        in_axis: bool = False,
        dropna: bool = True,
    ):
        self.name = name
        self.level = level
        self.grouper = _convert_grouper(index, grouper)
        self.all_grouper = None
        self.index = index
        self.sort = sort
        self.obj = obj
        self.observed = observed
        self.in_axis = in_axis
        self.dropna = dropna

        # right place for this?
        if isinstance(grouper, (Series, Index)) and name is None:
            self.name = grouper.name

        if isinstance(grouper, MultiIndex):
            self.grouper = grouper._values

        # we have a single grouper which may be a myriad of things,
        # some of which are dependent on the passing in level

        if level is not None:
            if not isinstance(level, int):
                if level not in index.names:
                    raise AssertionError(f"Level {level} not in index")
                level = index.names.index(level)

            if self.name is None:
                self.name = index.names[level]

            (
                self.grouper,
                self._codes,
                self._group_index,
            ) = index._get_grouper_for_level(self.grouper, level)

        # a passed Grouper like, directly get the grouper in the same way
        # as single grouper groupby, use the group_info to get codes
        elif isinstance(self.grouper, Grouper):
            # get the new grouper; we already have disambiguated
            # what key/level refer to exactly, don't need to
            # check again as we have by this point converted these
            # to an actual value (rather than a pd.Grouper)
            _, grouper, _ = self.grouper._get_grouper(self.obj, validate=False)
            if self.name is None:
                self.name = grouper.result_index.name
            self.obj = self.grouper.obj
            self.grouper = grouper._get_grouper()

        else:
            if self.grouper is None and self.name is not None and self.obj is not None:
                self.grouper = self.obj[self.name]

            elif isinstance(self.grouper, (list, tuple)):
                self.grouper = com.asarray_tuplesafe(self.grouper)

            # a passed Categorical
            elif is_categorical_dtype(self.grouper):

                self.grouper, self.all_grouper = recode_for_groupby(
                    self.grouper, self.sort, observed
                )
                categories = self.grouper.categories

                # we make a CategoricalIndex out of the cat grouper
                # preserving the categories / ordered attributes
                self._codes = self.grouper.codes
                if observed:
                    codes = algorithms.unique1d(self.grouper.codes)
                    codes = codes[codes != -1]
                    if sort or self.grouper.ordered:
                        codes = np.sort(codes)
                else:
                    codes = np.arange(len(categories))

                self._group_index = CategoricalIndex(
                    Categorical.from_codes(
                        codes=codes, categories=categories, ordered=self.grouper.ordered
                    ),
                    name=self.name,
                )

            # we are done
            if isinstance(self.grouper, Grouping):
                self.grouper = self.grouper.grouper

            # no level passed
            elif not isinstance(
                self.grouper, (Series, Index, ExtensionArray, np.ndarray)
            ):
                if getattr(self.grouper, "ndim", 1) != 1:
                    t = self.name or str(type(self.grouper))
                    raise ValueError(f"Grouper for '{t}' not 1-dimensional")
                self.grouper = self.index.map(self.grouper)
                if not (
                    hasattr(self.grouper, "__len__")
                    and len(self.grouper) == len(self.index)
                ):
                    grper = pprint_thing(self.grouper)
                    errmsg = (
                        "Grouper result violates len(labels) == "
                        f"len(data)\nresult: {grper}"
                    )
                    self.grouper = None  # Try for sanity
                    raise AssertionError(errmsg)

        # if we have a date/time-like grouper, make sure that we have
        # Timestamps like
        if getattr(self.grouper, "dtype", None) is not None:
            if is_datetime64_dtype(self.grouper):
                self.grouper = self.grouper.astype("datetime64[ns]")
            elif is_timedelta64_dtype(self.grouper):

                self.grouper = self.grouper.astype("timedelta64[ns]")
コード例 #16
0
ファイル: interval.py プロジェクト: ygene2/pandas
 def to_tuples(self, na_tuple=True):
     tuples = com.asarray_tuplesafe(zip(self.left, self.right))
     if not na_tuple:
         # GH 18756
         tuples = np.where(~self.isna(), tuples, np.nan)
     return tuples
コード例 #17
0
ファイル: grouper.py プロジェクト: ericdeansanchez/pandas
def _get_grouper(obj, key=None, axis=0, level=None, sort=True,
                 observed=False, mutated=False, validate=True):
    """
    create and return a BaseGrouper, which is an internal
    mapping of how to create the grouper indexers.
    This may be composed of multiple Grouping objects, indicating
    multiple groupers

    Groupers are ultimately index mappings. They can originate as:
    index mappings, keys to columns, functions, or Groupers

    Groupers enable local references to axis,level,sort, while
    the passed in axis, level, and sort are 'global'.

    This routine tries to figure out what the passing in references
    are and then creates a Grouping for each one, combined into
    a BaseGrouper.

    If observed & we have a categorical grouper, only show the observed
    values

    If validate, then check for key/level overlaps

    """
    group_axis = obj._get_axis(axis)

    # validate that the passed single level is compatible with the passed
    # axis of the object
    if level is not None:
        # TODO: These if-block and else-block are almost same.
        # MultiIndex instance check is removable, but it seems that there are
        # some processes only for non-MultiIndex in else-block,
        # eg. `obj.index.name != level`. We have to consider carefully whether
        # these are applicable for MultiIndex. Even if these are applicable,
        # we need to check if it makes no side effect to subsequent processes
        # on the outside of this condition.
        # (GH 17621)
        if isinstance(group_axis, MultiIndex):
            if is_list_like(level) and len(level) == 1:
                level = level[0]

            if key is None and is_scalar(level):
                # Get the level values from group_axis
                key = group_axis.get_level_values(level)
                level = None

        else:
            # allow level to be a length-one list-like object
            # (e.g., level=[0])
            # GH 13901
            if is_list_like(level):
                nlevels = len(level)
                if nlevels == 1:
                    level = level[0]
                elif nlevels == 0:
                    raise ValueError('No group keys passed!')
                else:
                    raise ValueError('multiple levels only valid with '
                                     'MultiIndex')

            if isinstance(level, str):
                if obj.index.name != level:
                    raise ValueError('level name {} is not the name of the '
                                     'index'.format(level))
            elif level > 0 or level < -1:
                raise ValueError(
                    'level > 0 or level < -1 only valid with MultiIndex')

            # NOTE: `group_axis` and `group_axis.get_level_values(level)`
            # are same in this section.
            level = None
            key = group_axis

    # a passed-in Grouper, directly convert
    if isinstance(key, Grouper):
        binner, grouper, obj = key._get_grouper(obj, validate=False)
        if key.key is None:
            return grouper, [], obj
        else:
            return grouper, {key.key}, obj

    # already have a BaseGrouper, just return it
    elif isinstance(key, BaseGrouper):
        return key, [], obj

    # In the future, a tuple key will always mean an actual key,
    # not an iterable of keys. In the meantime, we attempt to provide
    # a warning. We can assume that the user wanted a list of keys when
    # the key is not in the index. We just have to be careful with
    # unhashble elements of `key`. Any unhashable elements implies that
    # they wanted a list of keys.
    # https://github.com/pandas-dev/pandas/issues/18314
    is_tuple = isinstance(key, tuple)
    all_hashable = is_tuple and is_hashable(key)

    if is_tuple:
        if ((all_hashable and key not in obj and set(key).issubset(obj))
                or not all_hashable):
            # column names ('a', 'b') -> ['a', 'b']
            # arrays like (a, b) -> [a, b]
            msg = ("Interpreting tuple 'by' as a list of keys, rather than "
                   "a single key. Use 'by=[...]' instead of 'by=(...)'. In "
                   "the future, a tuple will always mean a single key.")
            warnings.warn(msg, FutureWarning, stacklevel=5)
            key = list(key)

    if not isinstance(key, list):
        keys = [key]
        match_axis_length = False
    else:
        keys = key
        match_axis_length = len(keys) == len(group_axis)

    # what are we after, exactly?
    any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
    any_groupers = any(isinstance(g, Grouper) for g in keys)
    any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray))
                        for g in keys)

    try:
        if isinstance(obj, DataFrame):
            all_in_columns_index = all(g in obj.columns or g in obj.index.names
                                       for g in keys)
        else:
            all_in_columns_index = False
    except Exception:
        all_in_columns_index = False

    if (not any_callable and not all_in_columns_index and
            not any_arraylike and not any_groupers and
            match_axis_length and level is None):
        keys = [com.asarray_tuplesafe(keys)]

    if isinstance(level, (tuple, list)):
        if key is None:
            keys = [None] * len(level)
        levels = level
    else:
        levels = [level] * len(keys)

    groupings = []
    exclusions = []

    # if the actual grouper should be obj[key]
    def is_in_axis(key):
        if not _is_label_like(key):
            try:
                obj._data.items.get_loc(key)
            except Exception:
                return False

        return True

    # if the grouper is obj[name]
    def is_in_obj(gpr):
        try:
            return id(gpr) == id(obj[gpr.name])
        except Exception:
            return False

    for i, (gpr, level) in enumerate(zip(keys, levels)):

        if is_in_obj(gpr):  # df.groupby(df['name'])
            in_axis, name = True, gpr.name
            exclusions.append(name)

        elif is_in_axis(gpr):  # df.groupby('name')
            if gpr in obj:
                if validate:
                    obj._check_label_or_level_ambiguity(gpr)
                in_axis, name, gpr = True, gpr, obj[gpr]
                exclusions.append(name)
            elif obj._is_level_reference(gpr):
                in_axis, name, level, gpr = False, None, gpr, None
            else:
                raise KeyError(gpr)
        elif isinstance(gpr, Grouper) and gpr.key is not None:
            # Add key to exclusions
            exclusions.append(gpr.key)
            in_axis, name = False, None
        else:
            in_axis, name = False, None

        if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]:
            raise ValueError(
                ("Length of grouper ({len_gpr}) and axis ({len_axis})"
                 " must be same length"
                 .format(len_gpr=len(gpr), len_axis=obj.shape[axis])))

        # create the Grouping
        # allow us to passing the actual Grouping as the gpr
        ping = (Grouping(group_axis,
                         gpr,
                         obj=obj,
                         name=name,
                         level=level,
                         sort=sort,
                         observed=observed,
                         in_axis=in_axis)
                if not isinstance(gpr, Grouping) else gpr)

        groupings.append(ping)

    if len(groupings) == 0:
        raise ValueError('No group keys passed!')

    # create the internals grouper
    grouper = BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated)
    return grouper, exclusions, obj
コード例 #18
0
ファイル: interval.py プロジェクト: forking-repos/pandas
 def to_tuples(self, na_tuple=True):
     tuples = com.asarray_tuplesafe(zip(self.left, self.right))
     if not na_tuple:
         # GH 18756
         tuples = np.where(~self.isna(), tuples, np.nan)
     return tuples
コード例 #19
0
ファイル: construction.py プロジェクト: Itay4/pandas
def sanitize_array(data, index, dtype=None, copy=False,
                   raise_cast_failure=False):
    """
    Sanitize input data to an ndarray, copy if specified, coerce to the
    dtype if specified.
    """
    if dtype is not None:
        dtype = pandas_dtype(dtype)

    if isinstance(data, ma.MaskedArray):
        mask = ma.getmaskarray(data)
        if mask.any():
            data, fill_value = maybe_upcast(data, copy=True)
            data.soften_mask()  # set hardmask False if it was True
            data[mask] = fill_value
        else:
            data = data.copy()

    data = extract_array(data, extract_numpy=True)

    # GH#846
    if isinstance(data, np.ndarray):

        if dtype is not None:
            subarr = np.array(data, copy=False)

            # possibility of nan -> garbage
            if is_float_dtype(data.dtype) and is_integer_dtype(dtype):
                try:
                    subarr = _try_cast(data, True, dtype, copy,
                                       True)
                except ValueError:
                    if copy:
                        subarr = data.copy()
            else:
                subarr = _try_cast(data, True, dtype, copy, raise_cast_failure)
        elif isinstance(data, Index):
            # don't coerce Index types
            # e.g. indexes can have different conversions (so don't fast path
            # them)
            # GH#6140
            subarr = sanitize_index(data, index, copy=copy)
        else:

            # we will try to copy be-definition here
            subarr = _try_cast(data, True, dtype, copy, raise_cast_failure)

    elif isinstance(data, ExtensionArray):
        if isinstance(data, ABCPandasArray):
            # We don't want to let people put our PandasArray wrapper
            # (the output of Series/Index.array), into a Series. So
            # we explicitly unwrap it here.
            subarr = data.to_numpy()
        else:
            subarr = data

        # everything else in this block must also handle ndarray's,
        # becuase we've unwrapped PandasArray into an ndarray.

        if dtype is not None:
            subarr = data.astype(dtype)

        if copy:
            subarr = data.copy()
        return subarr

    elif isinstance(data, (list, tuple)) and len(data) > 0:
        if dtype is not None:
            try:
                subarr = _try_cast(data, False, dtype, copy,
                                   raise_cast_failure)
            except Exception:
                if raise_cast_failure:  # pragma: no cover
                    raise
                subarr = np.array(data, dtype=object, copy=copy)
                subarr = lib.maybe_convert_objects(subarr)

        else:
            subarr = maybe_convert_platform(data)

        subarr = maybe_cast_to_datetime(subarr, dtype)

    elif isinstance(data, range):
        # GH#16804
        start, stop, step = get_range_parameters(data)
        arr = np.arange(start, stop, step, dtype='int64')
        subarr = _try_cast(arr, False, dtype, copy, raise_cast_failure)
    else:
        subarr = _try_cast(data, False, dtype, copy, raise_cast_failure)

    # scalar like, GH
    if getattr(subarr, 'ndim', 0) == 0:
        if isinstance(data, list):  # pragma: no cover
            subarr = np.array(data, dtype=object)
        elif index is not None:
            value = data

            # figure out the dtype from the value (upcast if necessary)
            if dtype is None:
                dtype, value = infer_dtype_from_scalar(value)
            else:
                # need to possibly convert the value here
                value = maybe_cast_to_datetime(value, dtype)

            subarr = construct_1d_arraylike_from_scalar(
                value, len(index), dtype)

        else:
            return subarr.item()

    # the result that we want
    elif subarr.ndim == 1:
        if index is not None:

            # a 1-element ndarray
            if len(subarr) != len(index) and len(subarr) == 1:
                subarr = construct_1d_arraylike_from_scalar(
                    subarr[0], len(index), subarr.dtype)

    elif subarr.ndim > 1:
        if isinstance(data, np.ndarray):
            raise Exception('Data must be 1-dimensional')
        else:
            subarr = com.asarray_tuplesafe(data, dtype=dtype)

    # This is to prevent mixed-type Series getting all casted to
    # NumPy string type, e.g. NaN --> '-1#IND'.
    if issubclass(subarr.dtype.type, compat.string_types):
        # GH#16605
        # If not empty convert the data to dtype
        # GH#19853: If data is a scalar, subarr has already the result
        if not lib.is_scalar(data):
            if not np.all(isna(data)):
                data = np.array(data, dtype=dtype, copy=False)
            subarr = np.array(data, dtype=object, copy=copy)

    if is_object_dtype(subarr.dtype) and dtype != 'object':
        inferred = lib.infer_dtype(subarr, skipna=False)
        if inferred == 'period':
            try:
                subarr = period_array(subarr)
            except IncompatibleFrequency:
                pass

    return subarr
コード例 #20
0
ファイル: datetimelike.py プロジェクト: WangyiG/pandas-1
 def _convert_arr_indexer(self, keyarr):
     try:
         return self._data._validate_listlike(keyarr, allow_object=True)
     except (ValueError, TypeError):
         return com.asarray_tuplesafe(keyarr)
コード例 #21
0
ファイル: datetimelike.py プロジェクト: Aathi410/Pro123
 def _maybe_cast_listlike_indexer(self, keyarr):
     try:
         res = self._data._validate_listlike(keyarr, allow_object=True)
     except (ValueError, TypeError):
         res = com.asarray_tuplesafe(keyarr)
     return Index(res, dtype=res.dtype)
コード例 #22
0
def get_grouper(
    obj: FrameOrSeries,
    key=None,
    axis: int = 0,
    level=None,
    sort: bool = True,
    observed: bool = False,
    mutated: bool = False,
    validate: bool = True,
    dropna: bool = True,
) -> tuple[ops.BaseGrouper, frozenset[Hashable], FrameOrSeries]:
    """
    Create and return a BaseGrouper, which is an internal
    mapping of how to create the grouper indexers.
    This may be composed of multiple Grouping objects, indicating
    multiple groupers

    Groupers are ultimately index mappings. They can originate as:
    index mappings, keys to columns, functions, or Groupers

    Groupers enable local references to axis,level,sort, while
    the passed in axis, level, and sort are 'global'.

    This routine tries to figure out what the passing in references
    are and then creates a Grouping for each one, combined into
    a BaseGrouper.

    If observed & we have a categorical grouper, only show the observed
    values.

    If validate, then check for key/level overlaps.

    """
    group_axis = obj._get_axis(axis)

    # validate that the passed single level is compatible with the passed
    # axis of the object
    if level is not None:
        # TODO: These if-block and else-block are almost same.
        # MultiIndex instance check is removable, but it seems that there are
        # some processes only for non-MultiIndex in else-block,
        # eg. `obj.index.name != level`. We have to consider carefully whether
        # these are applicable for MultiIndex. Even if these are applicable,
        # we need to check if it makes no side effect to subsequent processes
        # on the outside of this condition.
        # (GH 17621)
        if isinstance(group_axis, MultiIndex):
            if is_list_like(level) and len(level) == 1:
                level = level[0]

            if key is None and is_scalar(level):
                # Get the level values from group_axis
                key = group_axis.get_level_values(level)
                level = None

        else:
            # allow level to be a length-one list-like object
            # (e.g., level=[0])
            # GH 13901
            if is_list_like(level):
                nlevels = len(level)
                if nlevels == 1:
                    level = level[0]
                elif nlevels == 0:
                    raise ValueError("No group keys passed!")
                else:
                    raise ValueError(
                        "multiple levels only valid with MultiIndex")

            if isinstance(level, str):
                if obj._get_axis(axis).name != level:
                    raise ValueError(f"level name {level} is not the name "
                                     f"of the {obj._get_axis_name(axis)}")
            elif level > 0 or level < -1:
                raise ValueError(
                    "level > 0 or level < -1 only valid with MultiIndex")

            # NOTE: `group_axis` and `group_axis.get_level_values(level)`
            # are same in this section.
            level = None
            key = group_axis

    # a passed-in Grouper, directly convert
    if isinstance(key, Grouper):
        binner, grouper, obj = key._get_grouper(obj, validate=False)
        if key.key is None:
            return grouper, frozenset(), obj
        else:
            return grouper, frozenset({key.key}), obj

    # already have a BaseGrouper, just return it
    elif isinstance(key, ops.BaseGrouper):
        return key, frozenset(), obj

    if not isinstance(key, list):
        keys = [key]
        match_axis_length = False
    else:
        keys = key
        match_axis_length = len(keys) == len(group_axis)

    # what are we after, exactly?
    any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
    any_groupers = any(isinstance(g, Grouper) for g in keys)
    any_arraylike = any(
        isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys)

    # is this an index replacement?
    if (not any_callable and not any_arraylike and not any_groupers
            and match_axis_length and level is None):
        if isinstance(obj, DataFrame):
            all_in_columns_index = all(g in obj.columns or g in obj.index.names
                                       for g in keys)
        else:
            assert isinstance(obj, Series)
            all_in_columns_index = all(g in obj.index.names for g in keys)

        if not all_in_columns_index:
            keys = [com.asarray_tuplesafe(keys)]

    if isinstance(level, (tuple, list)):
        if key is None:
            keys = [None] * len(level)
        levels = level
    else:
        levels = [level] * len(keys)

    groupings: list[Grouping] = []
    exclusions: set[Hashable] = set()

    # if the actual grouper should be obj[key]
    def is_in_axis(key) -> bool:
        if not _is_label_like(key):
            # items -> .columns for DataFrame, .index for Series
            items = obj.axes[-1]
            try:
                items.get_loc(key)
            except (KeyError, TypeError, InvalidIndexError):
                # TypeError shows up here if we pass e.g. Int64Index
                return False

        return True

    # if the grouper is obj[name]
    def is_in_obj(gpr) -> bool:
        if not hasattr(gpr, "name"):
            return False
        try:
            return gpr is obj[gpr.name]
        except (KeyError, IndexError, InvalidIndexError):
            # IndexError reached in e.g. test_skip_group_keys when we pass
            #  lambda here
            # InvalidIndexError raised on key-types inappropriate for index,
            #  e.g. DatetimeIndex.get_loc(tuple())
            return False

    for gpr, level in zip(keys, levels):

        if is_in_obj(gpr):  # df.groupby(df['name'])
            in_axis = True
            exclusions.add(gpr.name)

        elif is_in_axis(gpr):  # df.groupby('name')
            if gpr in obj:
                if validate:
                    obj._check_label_or_level_ambiguity(gpr, axis=axis)
                in_axis, name, gpr = True, gpr, obj[gpr]
                if gpr.ndim != 1:
                    # non-unique columns; raise here to get the name in the
                    # exception message
                    raise ValueError(f"Grouper for '{name}' not 1-dimensional")
                exclusions.add(name)
            elif obj._is_level_reference(gpr, axis=axis):
                in_axis, level, gpr = False, gpr, None
            else:
                raise KeyError(gpr)
        elif isinstance(gpr, Grouper) and gpr.key is not None:
            # Add key to exclusions
            exclusions.add(gpr.key)
            in_axis = False
        else:
            in_axis = False

        if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]:
            raise ValueError(
                f"Length of grouper ({len(gpr)}) and axis ({obj.shape[axis]}) "
                "must be same length")

        # create the Grouping
        # allow us to passing the actual Grouping as the gpr
        ping = (Grouping(
            group_axis,
            gpr,
            obj=obj,
            level=level,
            sort=sort,
            observed=observed,
            in_axis=in_axis,
            dropna=dropna,
        ) if not isinstance(gpr, Grouping) else gpr)

        groupings.append(ping)

    if len(groupings) == 0 and len(obj):
        raise ValueError("No group keys passed!")
    elif len(groupings) == 0:
        groupings.append(
            Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))

    # create the internals grouper
    grouper = ops.BaseGrouper(group_axis,
                              groupings,
                              sort=sort,
                              mutated=mutated,
                              dropna=dropna)
    return grouper, frozenset(exclusions), obj
コード例 #23
0
def sanitize_array(
    data,
    index: Optional[Index],
    dtype: Optional[DtypeObj] = None,
    copy: bool = False,
    raise_cast_failure: bool = False,
) -> ArrayLike:
    """
    Sanitize input data to an ndarray or ExtensionArray, copy if specified,
    coerce to the dtype if specified.
    """

    if isinstance(data, ma.MaskedArray):
        mask = ma.getmaskarray(data)
        if mask.any():
            data, fill_value = maybe_upcast(data, copy=True)
            data.soften_mask()  # set hardmask False if it was True
            data[mask] = fill_value
        else:
            data = data.copy()

    # extract ndarray or ExtensionArray, ensure we have no PandasArray
    data = extract_array(data, extract_numpy=True)

    # GH#846
    if isinstance(data, np.ndarray):

        if dtype is not None and is_float_dtype(
                data.dtype) and is_integer_dtype(dtype):
            # possibility of nan -> garbage
            try:
                subarr = _try_cast(data, dtype, copy, True)
            except ValueError:
                if copy:
                    subarr = data.copy()
                else:
                    subarr = np.array(data, copy=False)
        else:
            # we will try to copy be-definition here
            subarr = _try_cast(data, dtype, copy, raise_cast_failure)

    elif isinstance(data, ABCExtensionArray):
        # it is already ensured above this is not a PandasArray
        subarr = data

        if dtype is not None:
            subarr = subarr.astype(dtype, copy=copy)
        elif copy:
            subarr = subarr.copy()
        return subarr

    elif isinstance(data,
                    (list, tuple, abc.Set, abc.ValuesView)) and len(data) > 0:
        if isinstance(data, set):
            # Raise only for unordered sets, e.g., not for dict_keys
            raise TypeError("Set type is unordered")
        data = list(data)

        if dtype is not None:
            subarr = _try_cast(data, dtype, copy, raise_cast_failure)
        else:
            subarr = maybe_convert_platform(data)

        subarr = maybe_cast_to_datetime(subarr, dtype)

    elif isinstance(data, range):
        # GH#16804
        arr = np.arange(data.start, data.stop, data.step, dtype="int64")
        subarr = _try_cast(arr, dtype, copy, raise_cast_failure)
    elif lib.is_scalar(data) and index is not None and dtype is not None:
        data = maybe_cast_to_datetime(data, dtype)
        if not lib.is_scalar(data):
            data = data[0]
        subarr = construct_1d_arraylike_from_scalar(data, len(index), dtype)
    else:
        subarr = _try_cast(data, dtype, copy, raise_cast_failure)

    # scalar like, GH
    if getattr(subarr, "ndim", 0) == 0:
        if isinstance(data, list):  # pragma: no cover
            subarr = np.array(data, dtype=object)
        elif index is not None:
            value = data

            # figure out the dtype from the value (upcast if necessary)
            if dtype is None:
                dtype, value = infer_dtype_from_scalar(value,
                                                       pandas_dtype=True)
            else:
                # need to possibly convert the value here
                value = maybe_cast_to_datetime(value, dtype)

            subarr = construct_1d_arraylike_from_scalar(
                value, len(index), dtype)

        else:
            return subarr.item()

    # the result that we want
    elif subarr.ndim == 1:
        if index is not None:

            # a 1-element ndarray
            if len(subarr) != len(index) and len(subarr) == 1:
                subarr = construct_1d_arraylike_from_scalar(
                    subarr[0], len(index), subarr.dtype)

    elif subarr.ndim > 1:
        if isinstance(data, np.ndarray):
            raise ValueError("Data must be 1-dimensional")
        else:
            subarr = com.asarray_tuplesafe(data, dtype=dtype)

    if not (is_extension_array_dtype(subarr.dtype)
            or is_extension_array_dtype(dtype)):
        # This is to prevent mixed-type Series getting all casted to
        # NumPy string type, e.g. NaN --> '-1#IND'.
        if issubclass(subarr.dtype.type, str):
            # GH#16605
            # If not empty convert the data to dtype
            # GH#19853: If data is a scalar, subarr has already the result
            if not lib.is_scalar(data):
                if not np.all(isna(data)):
                    data = np.array(data, dtype=dtype, copy=False)
                subarr = np.array(data, dtype=object, copy=copy)

        is_object_or_str_dtype = is_object_dtype(dtype) or is_string_dtype(
            dtype)
        if is_object_dtype(subarr.dtype) and not is_object_or_str_dtype:
            inferred = lib.infer_dtype(subarr, skipna=False)
            if inferred in {"interval", "period"}:
                subarr = array(subarr)

    return subarr