コード例 #1
0
    def agg_series(self, obj: Series, func: F):
        # Caller is responsible for checking ngroups != 0
        assert self.ngroups != 0
        assert len(
            self.bins) > 0  # otherwise we'd get IndexError in get_result

        if is_extension_array_dtype(obj.dtype):
            # preempt SeriesBinGrouper from raising TypeError
            return self._aggregate_series_pure_python(obj, func)

        dummy = obj[:0]
        grouper = libreduction.SeriesBinGrouper(obj, func, self.bins, dummy)
        return grouper.get_result()
コード例 #2
0
    def _aggregate_series_fast(self, obj, func):
        # At this point we have already checked that obj.index is not a MultiIndex
        #  and that obj is backed by an ndarray, not ExtensionArray
        func = self._is_builtin_func(func)

        group_index, _, ngroups = self.group_info

        # avoids object / Series creation overhead
        dummy = obj._get_values(slice(None, 0))
        indexer = get_group_index_sorter(group_index, ngroups)
        obj = obj.take(indexer)
        group_index = algorithms.take_nd(group_index, indexer, allow_fill=False)
        grouper = libreduction.SeriesGrouper(obj, func, group_index, ngroups, dummy)
        result, counts = grouper.get_result()
        return result, counts
コード例 #3
0
    def _aggregate_series_fast(self, obj: Series, func: F):
        # At this point we have already checked that
        #  - obj.index is not a MultiIndex
        #  - obj is backed by an ndarray, not ExtensionArray
        #  - len(obj) > 0
        #  - ngroups != 0
        func = self._is_builtin_func(func)

        group_index, _, ngroups = self.group_info

        # avoids object / Series creation overhead
        indexer = get_group_index_sorter(group_index, ngroups)
        obj = obj.take(indexer)
        group_index = group_index.take(indexer)
        grouper = libreduction.SeriesGrouper(obj, func, group_index, ngroups)
        result, counts = grouper.get_result()
        return result, counts