コード例 #1
0
ファイル: construction.py プロジェクト: Itay4/pandas
def _get_axes(N, K, index, columns):
    # helper to create the axes as indexes
    # return axes or defaults

    if index is None:
        index = ibase.default_index(N)
    else:
        index = ensure_index(index)

    if columns is None:
        columns = ibase.default_index(K)
    else:
        columns = ensure_index(columns)
    return index, columns
コード例 #2
0
ファイル: frame.py プロジェクト: sechilds/pandas
    def _prep_index(self, data, index, columns):
        N, K = data.shape
        if index is None:
            index = ibase.default_index(N)
        if columns is None:
            columns = ibase.default_index(K)

        if len(columns) != K:
            raise ValueError('Column length mismatch: {columns} vs. {K}'
                             .format(columns=len(columns), K=K))
        if len(index) != N:
            raise ValueError('Index length mismatch: {index} vs. {N}'
                             .format(index=len(index), N=N))
        return index, columns
コード例 #3
0
ファイル: construction.py プロジェクト: Itay4/pandas
def _list_of_series_to_arrays(data, columns, coerce_float=False, dtype=None):
    if columns is None:
        columns = _get_objs_combined_axis(data, sort=False)

    indexer_cache = {}

    aligned_values = []
    for s in data:
        index = getattr(s, 'index', None)
        if index is None:
            index = ibase.default_index(len(s))

        if id(index) in indexer_cache:
            indexer = indexer_cache[id(index)]
        else:
            indexer = indexer_cache[id(index)] = index.get_indexer(columns)

        values = com.values_from_object(s)
        aligned_values.append(algorithms.take_1d(values, indexer))

    values = np.vstack(aligned_values)

    if values.dtype == np.object_:
        content = list(values.T)
        return _convert_object_array(content, columns, dtype=dtype,
                                     coerce_float=coerce_float)
    else:
        return values.T, columns
コード例 #4
0
ファイル: concat.py プロジェクト: Itay4/pandas
    def _get_concat_axis(self):
        """
        Return index to be used along concatenation axis.
        """
        if self._is_series:
            if self.axis == 0:
                indexes = [x.index for x in self.objs]
            elif self.ignore_index:
                idx = ibase.default_index(len(self.objs))
                return idx
            elif self.keys is None:
                names = [None] * len(self.objs)
                num = 0
                has_names = False
                for i, x in enumerate(self.objs):
                    if not isinstance(x, Series):
                        raise TypeError("Cannot concatenate type 'Series' "
                                        "with object of type {type!r}"
                                        .format(type=type(x).__name__))
                    if x.name is not None:
                        names[i] = x.name
                        has_names = True
                    else:
                        names[i] = num
                        num += 1
                if has_names:
                    return Index(names)
                else:
                    return ibase.default_index(len(self.objs))
            else:
                return ensure_index(self.keys).set_names(self.names)
        else:
            indexes = [x._data.axes[self.axis] for x in self.objs]

        if self.ignore_index:
            idx = ibase.default_index(sum(len(i) for i in indexes))
            return idx

        if self.keys is None:
            concat_axis = _concat_indexes(indexes)
        else:
            concat_axis = _make_concat_multiindex(indexes, self.keys,
                                                  self.levels, self.names)

        self._maybe_check_integrity(concat_axis)

        return concat_axis
コード例 #5
0
ファイル: construction.py プロジェクト: Itay4/pandas
def extract_index(data):
    index = None
    if len(data) == 0:
        index = Index([])
    elif len(data) > 0:
        raw_lengths = []
        indexes = []

        have_raw_arrays = False
        have_series = False
        have_dicts = False

        for val in data:
            if isinstance(val, ABCSeries):
                have_series = True
                indexes.append(val.index)
            elif isinstance(val, dict):
                have_dicts = True
                indexes.append(list(val.keys()))
            elif is_list_like(val) and getattr(val, 'ndim', 1) == 1:
                have_raw_arrays = True
                raw_lengths.append(len(val))

        if not indexes and not raw_lengths:
            raise ValueError('If using all scalar values, you must pass'
                             ' an index')

        if have_series or have_dicts:
            index = _union_indexes(indexes)

        if have_raw_arrays:
            lengths = list(set(raw_lengths))
            if len(lengths) > 1:
                raise ValueError('arrays must all be same length')

            if have_dicts:
                raise ValueError('Mixing dicts with non-Series may lead to '
                                 'ambiguous ordering.')

            if have_series:
                if lengths[0] != len(index):
                    msg = ('array length {length} does not match index '
                           'length {idx_len}'
                           .format(length=lengths[0], idx_len=len(index)))
                    raise ValueError(msg)
            else:
                index = ibase.default_index(lengths[0])

    return ensure_index(index)
コード例 #6
0
ファイル: construction.py プロジェクト: pnhathuy07/pandas
def _get_names_from_index(data) -> Index:
    has_some_name = any(getattr(s, "name", None) is not None for s in data)
    if not has_some_name:
        return ibase.default_index(len(data))

    index: list[Hashable] = list(range(len(data)))
    count = 0
    for i, s in enumerate(data):
        n = getattr(s, "name", None)
        if n is not None:
            index[i] = n
        else:
            index[i] = f"Unnamed {count}"
            count += 1

    return Index(index)
コード例 #7
0
ファイル: construction.py プロジェクト: zeyu-gong/pandas
def get_names_from_index(data):
    has_some_name = any(getattr(s, "name", None) is not None for s in data)
    if not has_some_name:
        return ibase.default_index(len(data))

    index = list(range(len(data)))
    count = 0
    for i, s in enumerate(data):
        n = getattr(s, "name", None)
        if n is not None:
            index[i] = n
        else:
            index[i] = "Unnamed {count}".format(count=count)
            count += 1

    return index
コード例 #8
0
ファイル: construction.py プロジェクト: Itay4/pandas
def get_names_from_index(data):
    has_some_name = any(getattr(s, 'name', None) is not None for s in data)
    if not has_some_name:
        return ibase.default_index(len(data))

    index = lrange(len(data))
    count = 0
    for i, s in enumerate(data):
        n = getattr(s, 'name', None)
        if n is not None:
            index[i] = n
        else:
            index[i] = 'Unnamed {count}'.format(count=count)
            count += 1

    return index
コード例 #9
0
ファイル: construction.py プロジェクト: zahirakkouche/pandas
def to_arrays(data, columns, dtype: Optional[DtypeObj] = None):
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns) if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            columns = data.dtype.names
            if columns is not None:
                return [[]] * len(columns), columns
        return [], []  # columns if columns is not None else []

    elif isinstance(data[0], Categorical):
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = list(data.dtype.names)
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        content, columns = _list_to_arrays(data, columns)
    elif isinstance(data[0], abc.Mapping):
        content, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        content, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        content, columns = _list_to_arrays(data, columns)

    content, columns = _finalize_columns_and_data(content, columns, dtype)
    return content, columns
コード例 #10
0
def to_arrays(data, columns, coerce_float=False, dtype=None):
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        if columns is not None:
            arrays = [data._ixs(i, axis=1).values
                      for i, col in enumerate(data.columns) if col in columns]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            columns = data.dtype.names
            if columns is not None:
                return [[]] * len(columns), columns
        return [], []  # columns if columns is not None else []
    if isinstance(data[0], (list, tuple)):
        return _list_to_arrays(data, columns, coerce_float=coerce_float,
                               dtype=dtype)
    elif isinstance(data[0], compat.Mapping):
        return _list_of_dict_to_arrays(data, columns,
                                       coerce_float=coerce_float, dtype=dtype)
    elif isinstance(data[0], ABCSeries):
        return _list_of_series_to_arrays(data, columns,
                                         coerce_float=coerce_float,
                                         dtype=dtype)
    elif isinstance(data[0], Categorical):
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns
    elif (isinstance(data, (np.ndarray, ABCSeries, Index)) and
          data.dtype.names is not None):

        columns = list(data.dtype.names)
        arrays = [data[k] for k in columns]
        return arrays, columns
    else:
        # last ditch effort
        data = lmap(tuple, data)
        return _list_to_arrays(data, columns, coerce_float=coerce_float,
                               dtype=dtype)
コード例 #11
0
ファイル: construction.py プロジェクト: Itay4/pandas
def to_arrays(data, columns, coerce_float=False, dtype=None):
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        if columns is not None:
            arrays = [data._ixs(i, axis=1).values
                      for i, col in enumerate(data.columns) if col in columns]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            columns = data.dtype.names
            if columns is not None:
                return [[]] * len(columns), columns
        return [], []  # columns if columns is not None else []
    if isinstance(data[0], (list, tuple)):
        return _list_to_arrays(data, columns, coerce_float=coerce_float,
                               dtype=dtype)
    elif isinstance(data[0], compat.Mapping):
        return _list_of_dict_to_arrays(data, columns,
                                       coerce_float=coerce_float, dtype=dtype)
    elif isinstance(data[0], ABCSeries):
        return _list_of_series_to_arrays(data, columns,
                                         coerce_float=coerce_float,
                                         dtype=dtype)
    elif isinstance(data[0], Categorical):
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns
    elif (isinstance(data, (np.ndarray, ABCSeries, Index)) and
          data.dtype.names is not None):

        columns = list(data.dtype.names)
        arrays = [data[k] for k in columns]
        return arrays, columns
    else:
        # last ditch effort
        data = lmap(tuple, data)
        return _list_to_arrays(data, columns, coerce_float=coerce_float,
                               dtype=dtype)
コード例 #12
0
ファイル: construction.py プロジェクト: PaulGureghian1/Pandas
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
    if columns is None:
        columns = ibase.default_index(len(content))
    else:
        if len(columns) != len(content):  # pragma: no cover
            # caller's responsibility to check for this...
            raise AssertionError('{col:d} columns passed, passed data had '
                                 '{con} columns'.format(col=len(columns),
                                                        con=len(content)))

    # provide soft conversion of object dtypes
    def convert(arr):
        if dtype != object and dtype != np.object:
            arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
            arr = maybe_cast_to_datetime(arr, dtype)
        return arr

    arrays = [convert(arr) for arr in content]

    return arrays, columns
コード例 #13
0
ファイル: construction.py プロジェクト: Itay4/pandas
def _convert_object_array(content, columns, coerce_float=False, dtype=None):
    if columns is None:
        columns = ibase.default_index(len(content))
    else:
        if len(columns) != len(content):  # pragma: no cover
            # caller's responsibility to check for this...
            raise AssertionError('{col:d} columns passed, passed data had '
                                 '{con} columns'.format(col=len(columns),
                                                        con=len(content)))

    # provide soft conversion of object dtypes
    def convert(arr):
        if dtype != object and dtype != np.object:
            arr = lib.maybe_convert_objects(arr, try_float=coerce_float)
            arr = maybe_cast_to_datetime(arr, dtype)
        return arr

    arrays = [convert(arr) for arr in content]

    return arrays, columns
コード例 #14
0
ファイル: construction.py プロジェクト: zuku1985/pandas
def masked_rec_array_to_mgr(data, index, columns, dtype, copy):
    """
    Extract from a masked rec array and create the manager.
    """

    # essentially process a record array then fill it
    fill_value = data.fill_value
    fdata = ma.getdata(data)
    if index is None:
        index = get_names_from_index(fdata)
        if index is None:
            index = ibase.default_index(len(data))
    index = ensure_index(index)

    if columns is not None:
        columns = ensure_index(columns)
    arrays, arr_columns = to_arrays(fdata, columns)

    # fill if needed
    new_arrays = []
    for fv, arr, col in zip(fill_value, arrays, arr_columns):
        # TODO: numpy docs suggest fv must be scalar, but could it be
        #  non-scalar for object dtype?
        assert lib.is_scalar(fv), fv
        mask = ma.getmaskarray(data[col])
        if mask.any():
            arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
            arr[mask] = fv
        new_arrays.append(arr)

    # create the manager
    arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
    if columns is None:
        columns = arr_columns

    mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype)

    if copy:
        mgr = mgr.copy()
    return mgr
コード例 #15
0
ファイル: construction.py プロジェクト: WangyiG/pandas-1
def masked_rec_array_to_mgr(
    data: "MaskedRecords", index, columns, dtype: Optional[DtypeObj], copy: bool
):
    """
    Extract from a masked rec array and create the manager.
    """
    # essentially process a record array then fill it
    fdata = ma.getdata(data)
    if index is None:
        index = _get_names_from_index(fdata)
        if index is None:
            index = ibase.default_index(len(data))
    index = ensure_index(index)

    if columns is not None:
        columns = ensure_index(columns)
    arrays, arr_columns = to_arrays(fdata, columns)

    # fill if needed
    new_arrays = []
    for col in arr_columns:
        arr = data[col]
        fv = arr.fill_value

        mask = ma.getmaskarray(arr)
        if mask.any():
            arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
            arr[mask] = fv
        new_arrays.append(arr)

    # create the manager
    arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
    if columns is None:
        columns = arr_columns

    mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype)

    if copy:
        mgr = mgr.copy()
    return mgr
コード例 #16
0
def _list_of_series_to_arrays(
    data: List,
    columns: Union[Index, List],
    coerce_float: bool = False,
    dtype: Optional[DtypeObj] = None,
) -> Tuple[List[Scalar], Union[Index, List[Axis]]]:
    if columns is None:
        # We know pass_data is non-empty because data[0] is a Series
        pass_data = [
            x for x in data if isinstance(x, (ABCSeries, ABCDataFrame))
        ]
        columns = get_objs_combined_axis(pass_data, sort=False)

    indexer_cache: Dict[int, Scalar] = {}

    aligned_values = []
    for s in data:
        index = getattr(s, "index", None)
        if index is None:
            index = ibase.default_index(len(s))

        if id(index) in indexer_cache:
            indexer = indexer_cache[id(index)]
        else:
            indexer = indexer_cache[id(index)] = index.get_indexer(columns)

        values = extract_array(s, extract_numpy=True)
        aligned_values.append(algorithms.take_1d(values, indexer))

    values = np.vstack(aligned_values)

    if values.dtype == np.object_:
        content = list(values.T)
        columns = _validate_or_indexify_columns(content, columns)
        content = _convert_object_array(content,
                                        dtype=dtype,
                                        coerce_float=coerce_float)
        return content, columns
    else:
        return values.T, columns
コード例 #17
0
ファイル: construction.py プロジェクト: yaolan4/pandas
def rec_array_to_mgr(
    data: Union[MaskedRecords, np.recarray, np.ndarray],
    index,
    columns,
    dtype: Optional[DtypeObj],
    copy: bool,
    typ: str,
):
    """
    Extract from a masked rec array and create the manager.
    """
    # essentially process a record array then fill it
    fdata = ma.getdata(data)
    if index is None:
        index = _get_names_from_index(fdata)
        if index is None:
            index = ibase.default_index(len(data))
    index = ensure_index(index)

    if columns is not None:
        columns = ensure_index(columns)
    arrays, arr_columns = to_arrays(fdata, columns)

    # fill if needed
    if isinstance(data, np.ma.MaskedArray):
        new_arrays = fill_masked_arrays(data, arr_columns)
    else:
        new_arrays = arrays

    # create the manager
    arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
    if columns is None:
        columns = arr_columns

    mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype, typ=typ)

    if copy:
        mgr = mgr.copy()
    return mgr
コード例 #18
0
ファイル: construction.py プロジェクト: Itay4/pandas
def masked_rec_array_to_mgr(data, index, columns, dtype, copy):
    """
    Extract from a masked rec array and create the manager.
    """

    # essentially process a record array then fill it
    fill_value = data.fill_value
    fdata = ma.getdata(data)
    if index is None:
        index = get_names_from_index(fdata)
        if index is None:
            index = ibase.default_index(len(data))
    index = ensure_index(index)

    if columns is not None:
        columns = ensure_index(columns)
    arrays, arr_columns = to_arrays(fdata, columns)

    # fill if needed
    new_arrays = []
    for fv, arr, col in zip(fill_value, arrays, arr_columns):
        mask = ma.getmaskarray(data[col])
        if mask.any():
            arr, fv = maybe_upcast(arr, fill_value=fv, copy=True)
            arr[mask] = fv
        new_arrays.append(arr)

    # create the manager
    arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns)
    if columns is None:
        columns = arr_columns

    mgr = arrays_to_mgr(arrays, arr_columns, index, columns, dtype)

    if copy:
        mgr = mgr.copy()
    return mgr
コード例 #19
0
ファイル: construction.py プロジェクト: queantt/pandas
def _list_of_series_to_arrays(
    data: List,
    columns: Optional[Index],
) -> Tuple[np.ndarray, Index]:
    # returned np.ndarray has ndim == 2

    if columns is None:
        # We know pass_data is non-empty because data[0] is a Series
        pass_data = [
            x for x in data if isinstance(x, (ABCSeries, ABCDataFrame))
        ]
        columns = get_objs_combined_axis(pass_data, sort=False)

    indexer_cache: Dict[int, np.ndarray] = {}

    aligned_values = []
    for s in data:
        index = getattr(s, "index", None)
        if index is None:
            index = ibase.default_index(len(s))

        if id(index) in indexer_cache:
            indexer = indexer_cache[id(index)]
        else:
            indexer = indexer_cache[id(index)] = index.get_indexer(columns)

        values = extract_array(s, extract_numpy=True)
        aligned_values.append(algorithms.take_nd(values, indexer))

    # error: Argument 1 to "vstack" has incompatible type "List[ExtensionArray]";
    # expected "Sequence[Union[Union[int, float, complex, str, bytes, generic],
    # Sequence[Union[int, float, complex, str, bytes, generic]],
    # Sequence[Sequence[Any]], _SupportsArray]]"
    content = np.vstack(aligned_values)  # type: ignore[arg-type]

    return content, columns
コード例 #20
0
ファイル: construction.py プロジェクト: queantt/pandas
def to_arrays(
        data,
        columns: Optional[Index],
        dtype: Optional[DtypeObj] = None) -> Tuple[List[ArrayLike], Index]:
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns) if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            # error: Incompatible types in assignment (expression has type
            # "Optional[Tuple[str, ...]]", variable has type "Optional[Index]")
            columns = data.dtype.names  # type: ignore[assignment]
            if columns is not None:
                # i.e. numpy structured array
                arrays = [data[name] for name in columns]
                return arrays, ensure_index(columns)
        return [], ensure_index([])

    elif isinstance(data[0], Categorical):
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = Index(list(data.dtype.names))
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        content = _list_to_arrays(data)
    elif isinstance(data[0], abc.Mapping):
        content, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        content, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        content = _list_to_arrays(data)

    # error: Incompatible types in assignment (expression has type "List[ndarray]",
    # variable has type "List[Union[Union[str, int, float, bool], Union[Any, Any, Any,
    # Any]]]")
    content, columns = _finalize_columns_and_data(  # type: ignore[assignment]
        content, columns, dtype)
    # error: Incompatible return value type (got "Tuple[ndarray, Index]", expected
    # "Tuple[List[ExtensionArray], Index]")
    # error: Incompatible return value type (got "Tuple[ndarray, Index]", expected
    # "Tuple[List[ndarray], Index]")
    return content, columns  # type: ignore[return-value]
コード例 #21
0
ファイル: series.py プロジェクト: giang12/pandas
    def __init__(self, data=None, index=None, sparse_index=None, kind='block',
                 fill_value=None, name=None, dtype=None, copy=False,
                 fastpath=False):

        # we are called internally, so short-circuit
        if fastpath:

            # data is an ndarray, index is defined

            if not isinstance(data, SingleBlockManager):
                data = SingleBlockManager(data, index, fastpath=True)
            if copy:
                data = data.copy()

        else:

            if data is None:
                data = []

            if isinstance(data, Series) and name is None:
                name = data.name

            if isinstance(data, SparseArray):
                if index is not None:
                    assert (len(index) == len(data))
                sparse_index = data.sp_index
                if fill_value is None:
                    fill_value = data.fill_value

                data = np.asarray(data)

            elif isinstance(data, SparseSeries):
                if index is None:
                    index = data.index.view()
                if fill_value is None:
                    fill_value = data.fill_value
                # extract the SingleBlockManager
                data = data._data

            elif isinstance(data, (Series, dict)):
                data = Series(data, index=index)
                index = data.index.view()

                res = make_sparse(data, kind=kind, fill_value=fill_value)
                data, sparse_index, fill_value = res

            elif isinstance(data, (tuple, list, np.ndarray)):
                # array-like
                if sparse_index is None:
                    res = make_sparse(data, kind=kind, fill_value=fill_value)
                    data, sparse_index, fill_value = res
                else:
                    assert (len(data) == sparse_index.npoints)

            elif isinstance(data, SingleBlockManager):
                if dtype is not None:
                    data = data.astype(dtype)
                if index is None:
                    index = data.index.view()
                elif not data.index.equals(index) or copy:  # pragma: no cover
                    # GH#19275 SingleBlockManager input should only be called
                    # internally
                    raise AssertionError('Cannot pass both SingleBlockManager '
                                         '`data` argument and a different '
                                         '`index` argument.  `copy` must '
                                         'be False.')

            else:
                length = len(index)

                if data == fill_value or (isna(data) and isna(fill_value)):
                    if kind == 'block':
                        sparse_index = BlockIndex(length, [], [])
                    else:
                        sparse_index = IntIndex(length, [])
                    data = np.array([])

                else:
                    if kind == 'block':
                        locs, lens = ([0], [length]) if length else ([], [])
                        sparse_index = BlockIndex(length, locs, lens)
                    else:
                        sparse_index = IntIndex(length, index)
                    v = data
                    data = np.empty(length)
                    data.fill(v)

            if index is None:
                index = ibase.default_index(sparse_index.length)
            index = ensure_index(index)

            # create/copy the manager
            if isinstance(data, SingleBlockManager):

                if copy:
                    data = data.copy()
            else:

                # create a sparse array
                if not isinstance(data, SparseArray):
                    data = SparseArray(data, sparse_index=sparse_index,
                                       fill_value=fill_value, dtype=dtype,
                                       copy=copy)

                data = SingleBlockManager(data, index)

        generic.NDFrame.__init__(self, data)

        self.index = index
        self.name = name
コード例 #22
0
ファイル: construction.py プロジェクト: itamarst/pandas
def to_arrays(data,
              columns: Index | None,
              dtype: DtypeObj | None = None) -> tuple[list[ArrayLike], Index]:
    """
    Return list of arrays, columns.
    """
    if isinstance(data, ABCDataFrame):
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns) if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            if data.dtype.names is not None:
                # i.e. numpy structured array
                columns = ensure_index(data.dtype.names)
                arrays = [data[name] for name in columns]
                return arrays, columns
        return [], ensure_index([])

    elif isinstance(data[0], Categorical):
        # GH#38845 deprecate special case
        warnings.warn(
            "The behavior of DataFrame([categorical, ...]) is deprecated and "
            "in a future version will be changed to match the behavior of "
            "DataFrame([any_listlike, ...]). "
            "To retain the old behavior, pass as a dictionary "
            "DataFrame({col: categorical, ..})",
            FutureWarning,
            stacklevel=4,
        )
        if columns is None:
            columns = ibase.default_index(len(data))
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = Index(list(data.dtype.names))
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        arr = _list_to_arrays(data)
    elif isinstance(data[0], abc.Mapping):
        arr, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        arr, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        arr = _list_to_arrays(data)

    content, columns = _finalize_columns_and_data(arr, columns, dtype)
    return content, columns
コード例 #23
0
ファイル: construction.py プロジェクト: rth/pandas
def _extract_index(data) -> Index:
    """
    Try to infer an Index from the passed data, raise ValueError on failure.
    """
    index = None
    if len(data) == 0:
        index = Index([])
    elif len(data) > 0:
        raw_lengths = []
        indexes: list[list[Hashable] | Index] = []

        have_raw_arrays = False
        have_series = False
        have_dicts = False

        for val in data:
            if isinstance(val, ABCSeries):
                have_series = True
                indexes.append(val.index)
            elif isinstance(val, dict):
                have_dicts = True
                indexes.append(list(val.keys()))
            elif is_list_like(val) and getattr(val, "ndim", 1) == 1:
                have_raw_arrays = True
                raw_lengths.append(len(val))
            elif isinstance(val, np.ndarray) and val.ndim > 1:
                raise ValueError(
                    "Per-column arrays must each be 1-dimensional")

        if not indexes and not raw_lengths:
            raise ValueError(
                "If using all scalar values, you must pass an index")

        if have_series:
            index = union_indexes(indexes)
        elif have_dicts:
            index = union_indexes(indexes, sort=False)

        if have_raw_arrays:
            lengths = list(set(raw_lengths))
            if len(lengths) > 1:
                raise ValueError("All arrays must be of the same length")

            if have_dicts:
                raise ValueError(
                    "Mixing dicts with non-Series may lead to ambiguous ordering."
                )

            if have_series:
                assert index is not None  # for mypy
                if lengths[0] != len(index):
                    msg = (f"array length {lengths[0]} does not match index "
                           f"length {len(index)}")
                    raise ValueError(msg)
            else:
                index = ibase.default_index(lengths[0])

    # error: Argument 1 to "ensure_index" has incompatible type "Optional[Index]";
    # expected "Union[Union[Union[ExtensionArray, ndarray], Index, Series],
    # Sequence[Any]]"
    return ensure_index(index)  # type: ignore[arg-type]
コード例 #24
0
    def __init__(self,
                 data=None,
                 index=None,
                 sparse_index=None,
                 kind='block',
                 fill_value=None,
                 name=None,
                 dtype=None,
                 copy=False,
                 fastpath=False):

        # we are called internally, so short-circuit
        if fastpath:

            # data is an ndarray, index is defined

            if not isinstance(data, SingleBlockManager):
                data = SingleBlockManager(data, index, fastpath=True)
            if copy:
                data = data.copy()

        else:

            if data is None:
                data = []

            if isinstance(data, Series) and name is None:
                name = data.name

            if isinstance(data, SparseArray):
                if index is not None:
                    assert (len(index) == len(data))
                sparse_index = data.sp_index
                if fill_value is None:
                    fill_value = data.fill_value

                data = np.asarray(data)

            elif isinstance(data, SparseSeries):
                if index is None:
                    index = data.index.view()
                if fill_value is None:
                    fill_value = data.fill_value
                # extract the SingleBlockManager
                data = data._data

            elif isinstance(data, (Series, dict)):
                data = Series(data, index=index)
                index = data.index.view()

                res = make_sparse(data, kind=kind, fill_value=fill_value)
                data, sparse_index, fill_value = res

            elif isinstance(data, (tuple, list, np.ndarray)):
                # array-like
                if sparse_index is None:
                    res = make_sparse(data, kind=kind, fill_value=fill_value)
                    data, sparse_index, fill_value = res
                else:
                    assert (len(data) == sparse_index.npoints)

            elif isinstance(data, SingleBlockManager):
                if dtype is not None:
                    data = data.astype(dtype)
                if index is None:
                    index = data.index.view()
                elif not data.index.equals(index) or copy:  # pragma: no cover
                    # GH#19275 SingleBlockManager input should only be called
                    # internally
                    raise AssertionError('Cannot pass both SingleBlockManager '
                                         '`data` argument and a different '
                                         '`index` argument.  `copy` must '
                                         'be False.')

            else:
                length = len(index)

                if data == fill_value or (isna(data) and isna(fill_value)):
                    if kind == 'block':
                        sparse_index = BlockIndex(length, [], [])
                    else:
                        sparse_index = IntIndex(length, [])
                    data = np.array([])

                else:
                    if kind == 'block':
                        locs, lens = ([0], [length]) if length else ([], [])
                        sparse_index = BlockIndex(length, locs, lens)
                    else:
                        sparse_index = IntIndex(length, index)
                    v = data
                    data = np.empty(length)
                    data.fill(v)

            if index is None:
                index = ibase.default_index(sparse_index.length)
            index = ensure_index(index)

            # create/copy the manager
            if isinstance(data, SingleBlockManager):

                if copy:
                    data = data.copy()
            else:

                # create a sparse array
                if not isinstance(data, SparseArray):
                    data = SparseArray(data,
                                       sparse_index=sparse_index,
                                       fill_value=fill_value,
                                       dtype=dtype,
                                       copy=copy)

                data = SingleBlockManager(data, index)

        generic.NDFrame.__init__(self, data)

        self.index = index
        self.name = name
コード例 #25
0
ファイル: construction.py プロジェクト: rth/pandas
def to_arrays(data,
              columns: Index | None,
              dtype: DtypeObj | None = None) -> tuple[list[ArrayLike], Index]:
    """
    Return list of arrays, columns.

    Returns
    -------
    list[ArrayLike]
        These will become columns in a DataFrame.
    Index
        This will become frame.columns.

    Notes
    -----
    Ensures that len(result_arrays) == len(result_index).
    """
    if isinstance(data, ABCDataFrame):
        # see test_from_records_with_index_data, test_from_records_bad_index_column
        if columns is not None:
            arrays = [
                data._ixs(i, axis=1).values
                for i, col in enumerate(data.columns) if col in columns
            ]
        else:
            columns = data.columns
            arrays = [data._ixs(i, axis=1).values for i in range(len(columns))]

        return arrays, columns

    if not len(data):
        if isinstance(data, np.ndarray):
            if data.dtype.names is not None:
                # i.e. numpy structured array
                columns = ensure_index(data.dtype.names)
                arrays = [data[name] for name in columns]

                if len(data) == 0:
                    # GH#42456 the indexing above results in list of 2D ndarrays
                    # TODO: is that an issue with numpy?
                    for i, arr in enumerate(arrays):
                        if arr.ndim == 2:
                            arrays[i] = arr[:, 0]

                return arrays, columns
        return [], ensure_index([])

    elif isinstance(data[0], Categorical):
        # GH#38845 deprecate special case
        warnings.warn(
            "The behavior of DataFrame([categorical, ...]) is deprecated and "
            "in a future version will be changed to match the behavior of "
            "DataFrame([any_listlike, ...]). "
            "To retain the old behavior, pass as a dictionary "
            "DataFrame({col: categorical, ..})",
            FutureWarning,
            stacklevel=4,
        )
        if columns is None:
            columns = ibase.default_index(len(data))
        elif len(columns) > len(data):
            raise ValueError("len(columns) > len(data)")
        elif len(columns) < len(data):
            # doing this here is akin to a pre-emptive reindex
            data = data[:len(columns)]
        return data, columns

    elif isinstance(data, np.ndarray) and data.dtype.names is not None:
        # e.g. recarray
        columns = Index(list(data.dtype.names))
        arrays = [data[k] for k in columns]
        return arrays, columns

    if isinstance(data[0], (list, tuple)):
        arr = _list_to_arrays(data)
    elif isinstance(data[0], abc.Mapping):
        arr, columns = _list_of_dict_to_arrays(data, columns)
    elif isinstance(data[0], ABCSeries):
        arr, columns = _list_of_series_to_arrays(data, columns)
    else:
        # last ditch effort
        data = [tuple(x) for x in data]
        arr = _list_to_arrays(data)

    content, columns = _finalize_columns_and_data(arr, columns, dtype)
    return content, columns