def wrapper(self, other): if _is_convertible_to_td(other) or other is NaT: try: other = _to_m8(other) except ValueError: # failed to parse as timedelta return ops.invalid_comparison(self, other, op) result = meth(self, other) if isna(other): result.fill(nat_result) elif not is_list_like(other): return ops.invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: try: other = type(self)._from_sequence(other)._data except (ValueError, TypeError): return ops.invalid_comparison(self, other, op) result = meth(self, other) result = com.values_from_object(result) o_mask = np.array(isna(other)) if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result
def wrapper(self, other): meth = getattr(dtl.DatetimeLikeArrayMixin, opname) if isinstance(other, (datetime, np.datetime64, compat.string_types)): if isinstance(other, (datetime, np.datetime64)): # GH#18435 strings get a pass from tzawareness compat self._assert_tzawareness_compat(other) try: other = _to_m8(other, tz=self.tz) except ValueError: # string that cannot be parsed to Timestamp return ops.invalid_comparison(self, other, op) result = meth(self, other) if isna(other): result.fill(nat_result) elif lib.is_scalar(other): return ops.invalid_comparison(self, other, op) else: if isinstance(other, list): # FIXME: This can break for object-dtype with mixed types other = type(self)(other) elif not isinstance(other, (np.ndarray, ABCIndexClass, ABCSeries)): # Following Timestamp convention, __eq__ is all-False # and __ne__ is all True, others raise TypeError. return ops.invalid_comparison(self, other, op) if is_object_dtype(other): result = op(self.astype('O'), np.array(other)) elif not (is_datetime64_dtype(other) or is_datetime64tz_dtype(other)): # e.g. is_timedelta64_dtype(other) return ops.invalid_comparison(self, other, op) else: self._assert_tzawareness_compat(other) result = meth(self, np.asarray(other)) result = com.values_from_object(result) # Make sure to pass an array to result[...]; indexing with # Series breaks with older version of numpy o_mask = np.array(isna(other)) if o_mask.any(): result[o_mask] = nat_result if self.hasnans: result[self._isnan] = nat_result return result
def cmp_method(self, other): mask = None if isinstance(other, IntegerArray): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError( "can only perform ops with 1-d structures") if len(self) != len(other): raise ValueError("Lengths must match to compare") # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(): warnings.filterwarnings("ignore", "elementwise", FutureWarning) with np.errstate(all="ignore"): method = getattr(self._data, f"__{op_name}__") result = method(other) if result is NotImplemented: result = invalid_comparison(self._data, other, op) # nans propagate if mask is None: mask = self._mask else: mask = self._mask | mask result[mask] = op_name == "ne" return result
def wrapper(self, other): other = lib.item_from_zerodim(other) if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)): return NotImplemented if _is_convertible_to_td(other) or other is NaT: try: other = Timedelta(other) except ValueError: # failed to parse as timedelta return ops.invalid_comparison(self, other, op) result = op(self.view('i8'), other.value) if isna(other): result.fill(nat_result) elif not is_list_like(other): return ops.invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: try: other = type(self)._from_sequence(other)._data except (ValueError, TypeError): return ops.invalid_comparison(self, other, op) result = op(self.view('i8'), other.view('i8')) result = com.values_from_object(result) o_mask = np.array(isna(other)) if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result
def cmp_method(self, other): from pandas.arrays import BooleanArray mask = None if isinstance(other, (BooleanArray, IntegerArray)): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError( "can only perform ops with 1-d structures" ) if len(self) != len(other): raise ValueError("Lengths must match to compare") if other is libmissing.NA: # numpy does not handle pd.NA well as "other" scalar (it returns # a scalar False instead of an array) # This may be fixed by NA.__array_ufunc__. Revisit this check # once that's implemented. result = np.zeros(self._data.shape, dtype="bool") mask = np.ones(self._data.shape, dtype="bool") else: with warnings.catch_warnings(): # numpy may show a FutureWarning: # elementwise comparison failed; returning scalar instead, # but in the future will perform elementwise comparison # before returning NotImplemented. We fall back to the correct # behavior today, so that should be fine to ignore. warnings.filterwarnings("ignore", "elementwise", FutureWarning) with np.errstate(all="ignore"): method = getattr(self._data, f"__{op_name}__") result = method(other) if result is NotImplemented: result = invalid_comparison(self._data, other, op) # nans propagate if mask is None: mask = self._mask.copy() else: mask = self._mask | mask return BooleanArray(result, mask)
def _cmp_method(self, other, op): # ensure pandas array for list-like and eliminate non-interval scalars if is_list_like(other): if len(self) != len(other): raise ValueError("Lengths must match to compare") other = array(other) elif not isinstance(other, Interval): # non-interval scalar -> no matches return invalid_comparison(self, other, op) # determine the dtype of the elements we want to compare if isinstance(other, Interval): other_dtype = pandas_dtype("interval") elif not is_categorical_dtype(other.dtype): other_dtype = other.dtype else: # for categorical defer to categories for dtype other_dtype = other.categories.dtype # extract intervals if we have interval categories with matching closed if is_interval_dtype(other_dtype): if self.closed != other.categories.closed: return invalid_comparison(self, other, op) other = other.categories.take( other.codes, allow_fill=True, fill_value=other.categories._na_value) # interval-like -> need same closed and matching endpoints if is_interval_dtype(other_dtype): if self.closed != other.closed: return invalid_comparison(self, other, op) elif not isinstance(other, Interval): other = type(self)(other) if op is operator.eq: return (self._left == other.left) & (self._right == other.right) elif op is operator.ne: return (self._left != other.left) | (self._right != other.right) elif op is operator.gt: return (self._left > other.left) | ( (self._left == other.left) & (self._right > other.right)) elif op is operator.ge: return (self == other) | (self > other) elif op is operator.lt: return (self._left < other.left) | ( (self._left == other.left) & (self._right < other.right)) else: # operator.lt return (self == other) | (self < other) # non-interval/non-object dtype -> no matches if not is_object_dtype(other_dtype): return invalid_comparison(self, other, op) # object dtype -> iteratively check for intervals result = np.zeros(len(self), dtype=bool) for i, obj in enumerate(other): try: result[i] = op(self[i], obj) except TypeError: if obj is NA: # comparison with np.nan returns NA # github.com/pandas-dev/pandas/pull/37124#discussion_r509095092 result[i] = op is operator.ne else: raise return result