コード例 #1
0
    def argsort(self, ascending=True, kind="quicksort", *args, **kwargs):
        """
        Return the indices that would sort this array.

        Parameters
        ----------
        ascending : bool, default True
            Whether the indices should result in an ascending
            or descending sort.
        kind : {'quicksort', 'mergesort', 'heapsort'}, optional
            Sorting algorithm.
        *args, **kwargs:
            passed through to :func:`numpy.argsort`.

        Returns
        -------
        index_array : ndarray
            Array of indices that sort ``self``. If NaN values are contained,
            NaN values are placed at the end.

        See Also
        --------
        numpy.argsort : Sorting implementation used internally.
        """
        # Implementor note: You have two places to override the behavior of
        # argsort.
        # 1. _values_for_argsort : construct the values passed to np.argsort
        # 2. argsort : total control over sorting.
        ascending = nv.validate_argsort_with_ascending(ascending, args, kwargs)

        result = nargsort(self,
                          kind=kind,
                          ascending=ascending,
                          na_position="last")
        return result
コード例 #2
0
    def test_nargsort(self):
        # np.argsort(items) places NaNs last
        items = [np.nan] * 5 + list(range(100)) + [np.nan] * 5
        # np.argsort(items2) may not place NaNs first
        items2 = np.array(items, dtype="O")

        # mergesort is the most difficult to get right because we want it to be
        # stable.

        # According to numpy/core/tests/test_multiarray, """The number of
        # sorted items must be greater than ~50 to check the actual algorithm
        # because quick and merge sort fall over to insertion sort for small
        # arrays."""

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items, kind="mergesort", ascending=True, na_position="last")
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items, kind="mergesort", ascending=True, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items, kind="mergesort", ascending=False, na_position="last")
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items, kind="mergesort", ascending=False, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items2, kind="mergesort", ascending=True, na_position="last")
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items2, kind="mergesort", ascending=True, na_position="first")
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items2, kind="mergesort", ascending=False, na_position="last")
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(
            items2, kind="mergesort", ascending=False, na_position="first"
        )
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
コード例 #3
0
ファイル: cat_tools.py プロジェクト: sthagen/plydata
def _stable_series_sort(ser, ascending):
    """
    Stable sort for pandas series

    Temporary Solution until
        https://github.com/pandas-dev/pandas/issues/28697
        https://github.com/pandas-dev/pandas/pull/28698
    are resolved
    """
    from pandas.core.sorting import nargsort
    values = ser._values
    indexer = nargsort(
        values, kind='mergesort', ascending=ascending, na_position='last')
    return pd.Series(values[indexer], index=ser.index[indexer])
コード例 #4
0
ファイル: test_sorting.py プロジェクト: wkerzendorf/pandas
    def test_nargsort(self, ascending, na_position, exp, box):
        # list places NaNs last, np.array(..., dtype="O") may not place NaNs first
        items = box([np.nan] * 5 + list(range(100)) + [np.nan] * 5)

        # mergesort is the most difficult to get right because we want it to be
        # stable.

        # According to numpy/core/tests/test_multiarray, """The number of
        # sorted items must be greater than ~50 to check the actual algorithm
        # because quick and merge sort fall over to insertion sort for small
        # arrays."""

        result = nargsort(items,
                          kind="mergesort",
                          ascending=ascending,
                          na_position=na_position)
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
コード例 #5
0
ファイル: methods.py プロジェクト: sekero1/pandas
 def test_nargsort(self, data_missing_for_sorting, na_position, expected):
     # GH 25439
     result = nargsort(data_missing_for_sorting, na_position=na_position)
     tm.assert_numpy_array_equal(result, expected)
コード例 #6
0
ファイル: test_sorting.py プロジェクト: tianran10/pandas
 def test_nargsort_datetimearray_warning(self):
     # https://github.com/pandas-dev/pandas/issues/25439
     # can be removed once the FutureWarning for np.array(DTA) is removed
     data = to_datetime([0, 2, 0, 1]).tz_localize('Europe/Brussels')
     with tm.assert_produces_warning(None):
         nargsort(data)
コード例 #7
0
    def test_nargsort(self):
        # np.argsort(items) places NaNs last
        items = [nan] * 5 + list(range(100)) + [nan] * 5
        # np.argsort(items2) may not place NaNs first
        items2 = np.array(items, dtype='O')

        try:
            # GH 2785; due to a regression in NumPy1.6.2
            np.argsort(np.array([[1, 2], [1, 3], [1, 2]], dtype='i'))
            np.argsort(items2, kind='mergesort')
        except TypeError:
            pytest.skip('requested sort not available for type')

        # mergesort is the most difficult to get right because we want it to be
        # stable.

        # According to numpy/core/tests/test_multiarray, """The number of
        # sorted items must be greater than ~50 to check the actual algorithm
        # because quick and merge sort fall over to insertion sort for small
        # arrays."""

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items,
                          kind='mergesort',
                          ascending=True,
                          na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items,
                          kind='mergesort',
                          ascending=True,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items,
                          kind='mergesort',
                          ascending=False,
                          na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items,
                          kind='mergesort',
                          ascending=False,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items2,
                          kind='mergesort',
                          ascending=True,
                          na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items2,
                          kind='mergesort',
                          ascending=True,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items2,
                          kind='mergesort',
                          ascending=False,
                          na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items2,
                          kind='mergesort',
                          ascending=False,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
コード例 #8
0
ファイル: test_sorting.py プロジェクト: jakevdp/pandas
 def test_nargsort_datetimearray_warning(self):
     # https://github.com/pandas-dev/pandas/issues/25439
     # can be removed once the FutureWarning for np.array(DTA) is removed
     data = to_datetime([0, 2, 0, 1]).tz_localize('Europe/Brussels')
     with tm.assert_produces_warning(None):
         nargsort(data)
コード例 #9
0
ファイル: test_sorting.py プロジェクト: jakevdp/pandas
    def test_nargsort(self):
        # np.argsort(items) places NaNs last
        items = [nan] * 5 + list(range(100)) + [nan] * 5
        # np.argsort(items2) may not place NaNs first
        items2 = np.array(items, dtype='O')

        # mergesort is the most difficult to get right because we want it to be
        # stable.

        # According to numpy/core/tests/test_multiarray, """The number of
        # sorted items must be greater than ~50 to check the actual algorithm
        # because quick and merge sort fall over to insertion sort for small
        # arrays."""

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items, kind='mergesort', ascending=True,
                          na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items, kind='mergesort', ascending=True,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items, kind='mergesort', ascending=False,
                          na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items, kind='mergesort', ascending=False,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='last'
        result = nargsort(items2, kind='mergesort', ascending=True,
                          na_position='last')
        exp = list(range(5, 105)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=True, na_position='first'
        result = nargsort(items2, kind='mergesort', ascending=True,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(5, 105))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='last'
        result = nargsort(items2, kind='mergesort', ascending=False,
                          na_position='last')
        exp = list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)

        # mergesort, ascending=False, na_position='first'
        result = nargsort(items2, kind='mergesort', ascending=False,
                          na_position='first')
        exp = list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1))
        tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)