コード例 #1
0
    def setup_method(self, method):
        # aggregate multiple columns
        self.df = DataFrame({
            "key1": get_test_data(),
            "key2": get_test_data(),
            "data1": np.random.randn(N),
            "data2": np.random.randn(N),
        })

        # exclude a couple keys for fun
        self.df = self.df[self.df["key2"] > 1]

        self.df2 = DataFrame({
            "key1":
            get_test_data(n=N // 5),
            "key2":
            get_test_data(ngroups=NGROUPS // 2, n=N // 5),
            "value":
            np.random.randn(N // 5),
        })

        index, data = tm.getMixedTypeDict()
        self.target = DataFrame(data, index=index)

        # Join on string value
        self.source = DataFrame({
            "MergedA": data["A"],
            "MergedD": data["D"]
        },
                                index=data["C"])
コード例 #2
0
    def test_join(self):
        index, data = common.getMixedTypeDict()
        target = self.klass(data, index=index)

        # Join on string value
        source = self.klass({
            'MergedA': data['A'],
            'MergedD': data['D']
        },
                            index=data['C'])
        merged = target.join(source, on='C')

        self.assert_(np.array_equal(merged['MergedA'], target['A']))
        self.assert_(np.array_equal(merged['MergedD'], target['D']))

        # Test when some are missing

        # merge column not p resent
        self.assertRaises(Exception, target.join, source, on='E')

        # corner cases

        # nothing to merge
        merged = target.join(source.reindex([]), on='C')

        # overlap
        source_copy = source.copy()
        source_copy['A'] = 0
        self.assertRaises(Exception, target.join, source_copy, on='A')

        # can't specify how
        self.assertRaises(Exception, target.join, source, on='C', how='left')
コード例 #3
0
    def setUp(self):
        # aggregate multiple columns
        self.df = DataFrame({
            'key1': get_test_data(),
            'key2': get_test_data(),
            'data1': np.random.randn(N),
            'data2': np.random.randn(N)
        })

        # exclude a couple keys for fun
        self.df = self.df[self.df['key2'] > 1]

        self.df2 = DataFrame({
            'key1':
            get_test_data(n=N // 5),
            'key2':
            get_test_data(ngroups=NGROUPS // 2, n=N // 5),
            'value':
            np.random.randn(N // 5)
        })

        index, data = tm.getMixedTypeDict()
        self.target = DataFrame(data, index=index)

        # Join on string value
        self.source = DataFrame({
            'MergedA': data['A'],
            'MergedD': data['D']
        },
                                index=data['C'])
コード例 #4
0
ファイル: test_merge.py プロジェクト: andreas-h/pandas
    def setUp(self):
        # aggregate multiple columns
        self.df = DataFrame({'key1': get_test_data(),
                             'key2': get_test_data(),
                             'data1': np.random.randn(N),
                             'data2': np.random.randn(N)})

        # exclude a couple keys for fun
        self.df = self.df[self.df['key2'] > 1]

        self.df2 = DataFrame({'key1'  : get_test_data(n=N//5),
                              'key2'  : get_test_data(ngroups=NGROUPS//2,
                                                      n=N//5),
                              'value': np.random.randn(N // 5)})

        index, data = tm.getMixedTypeDict()
        self.target = DataFrame(data, index=index)

        # Join on string value
        self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']},
                                index=data['C'])

        self.left = DataFrame({'key': ['a', 'b', 'c', 'd', 'e', 'e', 'a'],
                          'v1': np.random.randn(7)})
        self.right = DataFrame({'v2': np.random.randn(4)},
                           index=['d', 'b', 'c', 'a'])
コード例 #5
0
ファイル: test_frame.py プロジェクト: pedrot/pandas
    def test_join(self):
        index, data = common.getMixedTypeDict()
        target = self.klass(data, index=index)

        # Join on string value
        source = self.klass({'MergedA' : data['A'], 'MergedD' : data['D']},
                            index=data['C'])
        merged = target.join(source, on='C')

        self.assert_(np.array_equal(merged['MergedA'], target['A']))
        self.assert_(np.array_equal(merged['MergedD'], target['D']))

        # Test when some are missing

        # merge column not p resent
        self.assertRaises(Exception, target.join, source, on='E')

        # corner cases

        # nothing to merge
        merged = target.join(source.reindex([]), on='C')

        # overlap
        source_copy = source.copy()
        source_copy['A'] = 0
        self.assertRaises(Exception, target.join, source_copy, on='A')

        # can't specify how
        self.assertRaises(Exception, target.join, source, on='C',
                          how='left')
コード例 #6
0
ファイル: test_merge.py プロジェクト: edmoody/pandas
    def setUp(self):
        # aggregate multiple columns
        self.df = DataFrame(
            {"key1": get_test_data(), "key2": get_test_data(), "data1": np.random.randn(N), "data2": np.random.randn(N)}
        )

        # exclude a couple keys for fun
        self.df = self.df[self.df["key2"] > 1]

        self.df2 = DataFrame(
            {
                "key1": get_test_data(n=N // 5),
                "key2": get_test_data(ngroups=NGROUPS // 2, n=N // 5),
                "value": np.random.randn(N // 5),
            }
        )

        index, data = tm.getMixedTypeDict()
        self.target = DataFrame(data, index=index)

        # Join on string value
        self.source = DataFrame({"MergedA": data["A"], "MergedD": data["D"]}, index=data["C"])

        self.left = DataFrame({"key": ["a", "b", "c", "d", "e", "e", "a"], "v1": np.random.randn(7)})
        self.right = DataFrame({"v2": np.random.randn(4)}, index=["d", "b", "c", "a"])
コード例 #7
0
    def test_creation_mixed(self):
        index, data = tm.getMixedTypeDict()

        indexed_frame = DataFrame.from_dict(
            data, orient=DataFrame.COLUMNS).set_index(index).build()  # noqa
        unindexed_frame = DataFrame.from_dict(
            data, orient=DataFrame.COLUMNS).build()  # noqa

        assert self.mixed_frame['foo'].dtype == np.object_
コード例 #8
0
    def test_map(self, datetime_series):
        index, data = tm.getMixedTypeDict()

        source = Series(data["B"], index=data["C"])
        target = Series(data["C"][:4], index=data["D"][:4])

        merged = target.map(source)

        for k, v in merged.items():
            assert v == source[target[k]]

        # input could be a dict
        merged = target.map(source.to_dict())

        for k, v in merged.items():
            assert v == source[target[k]]

        # function
        result = datetime_series.map(lambda x: x * 2)
        tm.assert_series_equal(result, datetime_series * 2)

        # GH 10324
        a = Series([1, 2, 3, 4])
        b = Series(["even", "odd", "even", "odd"], dtype="category")
        c = Series(["even", "odd", "even", "odd"])

        exp = Series(["odd", "even", "odd", np.nan], dtype="category")
        tm.assert_series_equal(a.map(b), exp)
        exp = Series(["odd", "even", "odd", np.nan])
        tm.assert_series_equal(a.map(c), exp)

        a = Series(["a", "b", "c", "d"])
        b = Series([1, 2, 3, 4],
                   index=pd.CategoricalIndex(["b", "c", "d", "e"]))
        c = Series([1, 2, 3, 4], index=Index(["b", "c", "d", "e"]))

        exp = Series([np.nan, 1, 2, 3])
        tm.assert_series_equal(a.map(b), exp)
        exp = Series([np.nan, 1, 2, 3])
        tm.assert_series_equal(a.map(c), exp)

        a = Series(["a", "b", "c", "d"])
        b = Series(
            ["B", "C", "D", "E"],
            dtype="category",
            index=pd.CategoricalIndex(["b", "c", "d", "e"]),
        )
        c = Series(["B", "C", "D", "E"], index=Index(["b", "c", "d", "e"]))

        exp = Series(
            pd.Categorical([np.nan, "B", "C", "D"],
                           categories=["B", "C", "D", "E"]))
        tm.assert_series_equal(a.map(b), exp)
        exp = Series([np.nan, "B", "C", "D"])
        tm.assert_series_equal(a.map(c), exp)
コード例 #9
0
    def test_map(self):
        index, data = tm.getMixedTypeDict()

        source = Series(data['B'], index=data['C'])
        target = Series(data['C'][:4], index=data['D'][:4])

        merged = target.map(source)

        for k, v in compat.iteritems(merged):
            assert v == source[target[k]]

        # input could be a dict
        merged = target.map(source.to_dict())

        for k, v in compat.iteritems(merged):
            assert v == source[target[k]]

        # function
        result = self.ts.map(lambda x: x * 2)
        tm.assert_series_equal(result, self.ts * 2)

        # GH 10324
        a = Series([1, 2, 3, 4])
        b = Series(["even", "odd", "even", "odd"], dtype="category")
        c = Series(["even", "odd", "even", "odd"])

        exp = Series(["odd", "even", "odd", np.nan], dtype="category")
        tm.assert_series_equal(a.map(b), exp)
        exp = Series(["odd", "even", "odd", np.nan])
        tm.assert_series_equal(a.map(c), exp)

        a = Series(['a', 'b', 'c', 'd'])
        b = Series([1, 2, 3, 4],
                   index=pd.CategoricalIndex(['b', 'c', 'd', 'e']))
        c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e']))

        exp = Series([np.nan, 1, 2, 3])
        tm.assert_series_equal(a.map(b), exp)
        exp = Series([np.nan, 1, 2, 3])
        tm.assert_series_equal(a.map(c), exp)

        a = Series(['a', 'b', 'c', 'd'])
        b = Series(['B', 'C', 'D', 'E'],
                   dtype='category',
                   index=pd.CategoricalIndex(['b', 'c', 'd', 'e']))
        c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e']))

        exp = Series(
            pd.Categorical([np.nan, 'B', 'C', 'D'],
                           categories=['B', 'C', 'D', 'E']))
        tm.assert_series_equal(a.map(b), exp)
        exp = Series([np.nan, 'B', 'C', 'D'])
        tm.assert_series_equal(a.map(c), exp)
コード例 #10
0
    def test_map(self):
        index, data = tm.getMixedTypeDict()

        source = Series(data['B'], index=data['C'])
        target = Series(data['C'][:4], index=data['D'][:4])

        merged = target.map(source)

        for k, v in compat.iteritems(merged):
            assert v == source[target[k]]

        # input could be a dict
        merged = target.map(source.to_dict())

        for k, v in compat.iteritems(merged):
            assert v == source[target[k]]

        # function
        result = self.ts.map(lambda x: x * 2)
        tm.assert_series_equal(result, self.ts * 2)

        # GH 10324
        a = Series([1, 2, 3, 4])
        b = Series(["even", "odd", "even", "odd"], dtype="category")
        c = Series(["even", "odd", "even", "odd"])

        exp = Series(["odd", "even", "odd", np.nan], dtype="category")
        tm.assert_series_equal(a.map(b), exp)
        exp = Series(["odd", "even", "odd", np.nan])
        tm.assert_series_equal(a.map(c), exp)

        a = Series(['a', 'b', 'c', 'd'])
        b = Series([1, 2, 3, 4],
                   index=pd.CategoricalIndex(['b', 'c', 'd', 'e']))
        c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e']))

        exp = Series([np.nan, 1, 2, 3])
        tm.assert_series_equal(a.map(b), exp)
        exp = Series([np.nan, 1, 2, 3])
        tm.assert_series_equal(a.map(c), exp)

        a = Series(['a', 'b', 'c', 'd'])
        b = Series(['B', 'C', 'D', 'E'], dtype='category',
                   index=pd.CategoricalIndex(['b', 'c', 'd', 'e']))
        c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e']))

        exp = Series(pd.Categorical([np.nan, 'B', 'C', 'D'],
                                    categories=['B', 'C', 'D', 'E']))
        tm.assert_series_equal(a.map(b), exp)
        exp = Series([np.nan, 'B', 'C', 'D'])
        tm.assert_series_equal(a.map(c), exp)
コード例 #11
0
ファイル: test_series.py プロジェクト: timClicks/pandas
    def test_merge(self):
        index, data = common.getMixedTypeDict()

        source = Series(data['B'], index=data['C'])
        target = Series(data['C'][:4], index=data['D'][:4])

        merged = target.merge(source)

        for k, v in merged.iteritems():
            self.assertEqual(v, source[target[k]])

        # input could be a dict
        merged = target.merge(source.toDict())

        for k, v in merged.iteritems():
            self.assertEqual(v, source[target[k]])
コード例 #12
0
ファイル: test_series.py プロジェクト: willgrass/pandas
    def test_merge(self):
        index, data = common.getMixedTypeDict()

        source = Series(data['B'], index=data['C'])
        target = Series(data['C'][:4], index=data['D'][:4])

        merged = target.merge(source)

        for k, v in merged.iteritems():
            self.assertEqual(v, source[target[k]])

        # input could be a dict
        merged = target.merge(source.toDict())

        for k, v in merged.iteritems():
            self.assertEqual(v, source[target[k]])
コード例 #13
0
    def test_transpose(self):
        frame = self.frame
        dft = frame.T
        for idx, series in dft.iteritems():
            for col, value in series.iteritems():
                if np.isnan(value):
                    self.assert_(np.isnan(frame[col][idx]))
                else:
                    self.assertEqual(value, frame[col][idx])

        # mixed type
        index, data = common.getMixedTypeDict()
        mixed = self.klass(data, index=index)

        mixed_T = mixed.T
        for col, s in mixed_T.iteritems():
            self.assert_(s.dtype == np.object_)
コード例 #14
0
ファイル: test_api.py プロジェクト: chrish42/pandas
    def test_transpose(self, float_frame):
        frame = float_frame
        dft = frame.T
        for idx, series in dft.items():
            for col, value in series.items():
                if np.isnan(value):
                    assert np.isnan(frame[col][idx])
                else:
                    assert value == frame[col][idx]

        # mixed type
        index, data = tm.getMixedTypeDict()
        mixed = self.klass(data, index=index)

        mixed_T = mixed.T
        for col, s in mixed_T.items():
            assert s.dtype == np.object_
コード例 #15
0
ファイル: test_api.py プロジェクト: xinyue-zhouzheng/pandas
    def test_transpose(self, float_frame):
        frame = float_frame
        dft = frame.T
        for idx, series in compat.iteritems(dft):
            for col, value in compat.iteritems(series):
                if np.isnan(value):
                    assert np.isnan(frame[col][idx])
                else:
                    assert value == frame[col][idx]

        # mixed type
        index, data = tm.getMixedTypeDict()
        mixed = self.klass(data, index=index)

        mixed_T = mixed.T
        for col, s in compat.iteritems(mixed_T):
            assert s.dtype == np.object_
コード例 #16
0
ファイル: test_frame.py プロジェクト: pedrot/pandas
    def test_transpose(self):
        frame = self.frame
        dft = frame.T
        for idx, series in dft.iteritems():
            for col, value in series.iteritems():
                if np.isnan(value):
                    self.assert_(np.isnan(frame[col][idx]))
                else:
                    self.assertEqual(value, frame[col][idx])

        # mixed type
        index, data = common.getMixedTypeDict()
        mixed = self.klass(data, index=index)

        mixed_T = mixed.T
        for col, s in mixed_T.iteritems():
            self.assert_(s.dtype == np.object_)
コード例 #17
0
ファイル: test_api.py プロジェクト: AllenDowney/pandas
    def test_transpose(self):
        frame = self.frame
        dft = frame.T
        for idx, series in compat.iteritems(dft):
            for col, value in compat.iteritems(series):
                if np.isnan(value):
                    assert np.isnan(frame[col][idx])
                else:
                    assert value == frame[col][idx]

        # mixed type
        index, data = tm.getMixedTypeDict()
        mixed = DataFrame(data, index=index)

        mixed_T = mixed.T
        for col, s in compat.iteritems(mixed_T):
            assert s.dtype == np.object_
コード例 #18
0
    def test_transpose(self):
        frame = self.frame
        dft = frame.T
        for idx, series in compat.iteritems(dft):
            for col, value in compat.iteritems(series):
                if np.isnan(value):
                    self.assertTrue(np.isnan(frame[col][idx]))
                else:
                    self.assertEqual(value, frame[col][idx])

        # mixed type
        index, data = tm.getMixedTypeDict()
        mixed = DataFrame(data, index=index)

        mixed_T = mixed.T
        for col, s in compat.iteritems(mixed_T):
            self.assertEqual(s.dtype, np.object_)
コード例 #19
0
ファイル: test_series.py プロジェクト: benracine/pandas
    def test_map(self):
        index, data = tm.getMixedTypeDict()

        source = Series(data['B'], index=data['C'])
        target = Series(data['C'][:4], index=data['D'][:4])

        merged = target.map(source)

        for k, v in merged.iteritems():
            self.assertEqual(v, source[target[k]])

        # input could be a dict
        merged = target.map(source.to_dict())

        for k, v in merged.iteritems():
            self.assertEqual(v, source[target[k]])

        # function
        result = self.ts.map(lambda x: x * 2)
        self.assert_(np.array_equal(result, self.ts * 2))
コード例 #20
0
ファイル: test_join.py プロジェクト: johnnychiuchiu/pandas
    def setup_method(self, method):
        # aggregate multiple columns
        self.df = DataFrame({'key1': get_test_data(),
                             'key2': get_test_data(),
                             'data1': np.random.randn(N),
                             'data2': np.random.randn(N)})

        # exclude a couple keys for fun
        self.df = self.df[self.df['key2'] > 1]

        self.df2 = DataFrame({'key1': get_test_data(n=N // 5),
                              'key2': get_test_data(ngroups=NGROUPS // 2,
                                                    n=N // 5),
                              'value': np.random.randn(N // 5)})

        index, data = tm.getMixedTypeDict()
        self.target = DataFrame(data, index=index)

        # Join on string value
        self.source = DataFrame({'MergedA': data['A'], 'MergedD': data['D']},
                                index=data['C'])
コード例 #21
0
ファイル: test_frame.py プロジェクト: pedrot/pandas
    def test_constructor_mixed(self):
        index, data = common.getMixedTypeDict()

        indexed_frame = self.klass(data, index=index)
        unindexed_frame = self.klass(data)
コード例 #22
0
    def test_constructor_mixed(self):
        index, data = common.getMixedTypeDict()

        indexed_frame = self.klass(data, index=index)
        unindexed_frame = self.klass(data)