コード例 #1
0
ファイル: typeset.py プロジェクト: rbrenor2/br2-olx-crawler
        types = {
            Unsupported,
            Boolean,
            Numeric,
            Categorical,
            DateTime,
        }

        if config["vars"]["path"]["active"].get(bool):
            types.add(Path)
            if config["vars"]["file"]["active"].get(bool):
                types.add(File)
                if config["vars"]["image"]["active"].get(bool):
                    types.add(Image)

        if config["vars"]["url"]["active"].get(bool):
            types.add(URL)

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            super().__init__(types)


if __name__ == "__main__":
    from matplotlib import pyplot as plt

    config.set_arg_group("explorative")
    ts = ProfilingTypeSet()
    ts.plot_graph()
    plt.show()
コード例 #2
0
    def __init__(
        self,
        df=None,
        minimal=False,
        explorative=False,
        sensitive=False,
        dark_mode=False,
        orange_mode=False,
        sample=None,
        config_file: Union[Path, str] = None,
        lazy: bool = True,
        **kwargs,
    ):
        """Generate a ProfileReport based on a pandas DataFrame

        Args:
            df: the pandas DataFrame
            minimal: minimal mode is a default configuration with minimal computation
            config_file: a config file (.yml), mutually exclusive with `minimal`
            lazy: compute when needed
            **kwargs: other arguments, for valid arguments, check the default configuration file.
        """
        if config_file is not None and minimal:
            raise ValueError(
                "Arguments `config_file` and `minimal` are mutually exclusive."
            )

        if df is None and not lazy:
            raise ValueError(
                "Can init a not-lazy ProfileReport with no DataFrame")

        if config_file:
            config.set_file(config_file)
        elif minimal:
            config.set_file(get_config("config_minimal.yaml"))
        elif not config.is_default:
            pass
            # TODO: logging instead of warning
            # warnings.warn(
            #     "Currently configuration is not the default, if you want to restore "
            #     "default configuration, please run 'pandas_profiling.clear_config()'"
            # )
        if explorative:
            config.set_arg_group("explorative")
        if sensitive:
            config.set_arg_group("sensitive")
        if dark_mode:
            config.set_arg_group("dark_mode")
        if orange_mode:
            config.set_arg_group("orange_mode")

        config.set_kwargs(kwargs)

        self.df = None
        self._df_hash = -1
        self._description_set = None
        self._sample = sample
        self._title = None
        self._report = None
        self._html = None
        self._widgets = None
        self._json = None

        if df is not None:
            # preprocess df
            self.df = self.preprocess(df)

        if not lazy:
            # Trigger building the report structure
            _ = self.report
コード例 #3
0
    def __init__(
        self,
        df: Optional[pd.DataFrame] = None,
        minimal: bool = False,
        explorative: bool = False,
        sensitive: bool = False,
        dark_mode: bool = False,
        orange_mode: bool = False,
        sample: Optional[dict] = None,
        config_file: Union[Path, str] = None,
        lazy: bool = True,
        typeset: Optional[VisionsTypeset] = None,
        summarizer: Optional[BaseSummarizer] = None,
        **kwargs,
    ):
        """Generate a ProfileReport based on a pandas DataFrame

        Args:
            df: the pandas DataFrame
            minimal: minimal mode is a default configuration with minimal computation
            config_file: a config file (.yml), mutually exclusive with `minimal`
            lazy: compute when needed
            sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame())
            typeset: optional user typeset to use for type inference
            summarizer: optional user summarizer to generate custom summary output
            **kwargs: other arguments, for valid arguments, check the default configuration file.
        """
        config.clear()  # to reset (previous) config.
        if config_file is not None and minimal:
            raise ValueError(
                "Arguments `config_file` and `minimal` are mutually exclusive."
            )

        if df is None and not lazy:
            raise ValueError("Can init a not-lazy ProfileReport with no DataFrame")

        if config_file:
            config.set_file(config_file)
        elif minimal:
            config.set_file(get_config("config_minimal.yaml"))
        elif not config.is_default:
            pass
            # warnings.warn(
            #     "Currently configuration is not the default, if you want to restore "
            #     "default configuration, please run 'pandas_profiling.clear_config()'"
            # )
        if explorative:
            config.set_arg_group("explorative")
        if sensitive:
            config.set_arg_group("sensitive")
        if dark_mode:
            config.set_arg_group("dark_mode")
        if orange_mode:
            config.set_arg_group("orange_mode")

        config.set_kwargs(kwargs)

        self.df = None
        self._df_hash = -1
        self._description_set = None
        self._sample = sample
        self._title = None
        self._report = None
        self._html = None
        self._widgets = None
        self._json = None
        self._typeset = typeset
        self._summarizer = summarizer

        if df is not None:
            # preprocess df
            self.df = self.preprocess(df)

        if not lazy:
            # Trigger building the report structure
            _ = self.report