def __init__( self, df=None, minimal=False, config_file: Union[Path, str] = None, lazy: bool = True, **kwargs, ): """Generate a ProfileReport based on a pandas DataFrame Args: df: the pandas DataFrame minimal: minimal mode is a default configuration with minimal computation config_file: a config file (.yml), mutually exclusive with `minimal` lazy: compute when needed **kwargs: other arguments, for valid arguments, check the default configuration file. """ if config_file is not None and minimal: raise ValueError( "Arguments `config_file` and `minimal` are mutually exclusive." ) if df is None and not lazy: raise ValueError( "Can init a not-lazy ProfileReport with no DataFrame") if config_file: config.set_file(config_file) elif minimal: config.set_file(get_config_minimal()) elif not config.is_default: pass # TODO: logging instead of warning # warnings.warn( # "Currently configuration is not the default, if you want to restore " # "default configuration, please run 'pandas_profiling.clear_config()'" # ) config.set_kwargs(kwargs) self.df = None self._df_hash = -1 self._description_set = None self._title = None self._report = None self._html = None self._widgets = None self._json = None if df is not None: # preprocess df self.df = self.preprocess(df) if not lazy: # Trigger building the report structure _ = self.report
def __init__(self, df, minimal=False, config_file: Path = None, **kwargs): if sys.version_info <= (3, 5): warnings.warn( "This is the last release to support Python 3.5, please upgrade.", category=DeprecationWarning, ) if config_file is not None and minimal: raise ValueError( "Arguments `config_file` and `minimal` are mutually exclusive." ) if minimal: config_file = get_config_minimal() if config_file: config.set_file(str(config_file)) config.set_kwargs(kwargs) self.date_start = datetime.utcnow() # Treat index as any other column if (not pd.Index(np.arange(0, len(df))).equals(df.index) or df.index.dtype != np.int64): df = df.reset_index() # Rename reserved column names df = rename_index(df) # Ensure that columns are strings df.columns = df.columns.astype("str") # Get dataset statistics description_set = describe_df(df) # Build report structure self.sample = self.get_sample(df) self.title = config["title"].get(str) self.description_set = description_set self.date_end = datetime.utcnow() disable_progress_bar = not config["progress_bar"].get(bool) with tqdm(total=1, desc="build report structure", disable=disable_progress_bar) as pbar: self.report = get_report_structure(self.date_start, self.date_end, self.sample, description_set) pbar.update()
def __init__( self, df: Optional[pd.DataFrame] = None, minimal: bool = False, explorative: bool = False, sensitive: bool = False, dark_mode: bool = False, orange_mode: bool = False, sample: Optional[dict] = None, config_file: Union[Path, str] = None, lazy: bool = True, **kwargs, ): """Generate a ProfileReport based on a pandas DataFrame Args: df: the pandas DataFrame minimal: minimal mode is a default configuration with minimal computation config_file: a config file (.yml), mutually exclusive with `minimal` lazy: compute when needed sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame()) **kwargs: other arguments, for valid arguments, check the default configuration file. """ if config_file is not None and minimal: raise ValueError( "Arguments `config_file` and `minimal` are mutually exclusive." ) if df is None and not lazy: raise ValueError( "Can init a not-lazy ProfileReport with no DataFrame") if config_file: config.set_file(config_file) elif minimal: config.set_file(get_config("config_minimal.yaml")) elif not config.is_default: pass # warnings.warn( # "Currently configuration is not the default, if you want to restore " # "default configuration, please run 'pandas_profiling.clear_config()'" # ) if explorative: config.set_arg_group("explorative") if sensitive: config.set_arg_group("sensitive") if dark_mode: config.set_arg_group("dark_mode") if orange_mode: config.set_arg_group("orange_mode") config.set_kwargs(kwargs) self.df = None self._df_hash = -1 self._description_set = None self._sample = sample self._title = None self._report = None self._html = None self._widgets = None self._json = None self._typeset = None self._summarizer = None if df is not None: # preprocess df self.df = self.preprocess(df) if not lazy: # Trigger building the report structure _ = self.report