def render_count(summary): template_variables = render_common(summary) image_format = config["plot"]["image_format"].get(str) # Top info = VariableInfo( summary["varid"], summary["varname"], "Real number (ℝ / ℝ<sub>≥0</sub>)", summary["warnings"], ) table1 = Table([ { "name": "Distinct count", "value": summary["n_unique"], "fmt": "fmt", "alert": False, }, { "name": "Unique (%)", "value": summary["p_unique"], "fmt": "fmt_percent", "alert": False, }, { "name": "Missing", "value": summary["n_missing"], "fmt": "fmt", "alert": False, }, { "name": "Missing (%)", "value": summary["p_missing"], "fmt": "fmt_percent", "alert": False, }, ]) table2 = Table([ { "name": "Mean", "value": summary["mean"], "fmt": "fmt", "alert": False }, { "name": "Minimum", "value": summary["min"], "fmt": "fmt", "alert": False }, { "name": "Maximum", "value": summary["max"], "fmt": "fmt", "alert": False }, { "name": "Zeros", "value": summary["n_zeros"], "fmt": "fmt", "alert": False, }, { "name": "Zeros (%)", "value": summary["p_zeros"], "fmt": "fmt_percent", "alert": False, }, { "name": "Memory size", "value": summary["memory_size"], "fmt": "fmt_bytesize", "alert": False, }, ]) # TODO: replace with SmallImage... mini_histo = Image( mini_histogram(summary["histogram_data"], summary, summary["histogram_bins"]), image_format=image_format, alt="Mini histogram", ) template_variables["top"] = Sequence([info, table1, table2, mini_histo], sequence_type="grid") quantile_statistics = { "name": "Quantile statistics", "items": [ { "name": "Minimum", "value": summary["min"], "fmt": "fmt_numeric", "alert": False, }, { "name": "5-th percentile", "value": summary["quantile_5"], "fmt": "fmt_numeric", "alert": False, }, { "name": "Q1", "value": summary["quantile_25"], "fmt": "fmt_numeric", "alert": False, }, { "name": "median", "value": summary["quantile_50"], "fmt": "fmt_numeric", "alert": False, }, { "name": "Q3", "value": summary["quantile_75"], "fmt": "fmt_numeric", "alert": False, }, { "name": "95-th percentile", "value": summary["quantile_95"], "fmt": "fmt_numeric", "alert": False, }, { "name": "Maximum", "value": summary["max"], "fmt": "fmt_numeric", "alert": False, }, { "name": "Range", "value": summary["range"], "fmt": "fmt_numeric", "alert": False, }, { "name": "Interquartile range", "value": summary["iqr"], "fmt": "fmt_numeric", "alert": False, }, ], } descriptive_statistics = { "name": "Descriptive statistics", "items": [ { "name": "Standard deviation", "value": summary["std"], "fmt": "fmt_numeric", }, { "name": "Coefficient of variation", "value": summary["cv"], "fmt": "fmt_numeric", }, { "name": "Kurtosis", "value": summary["kurt"], "fmt": "fmt_numeric" }, { "name": "Mean", "value": summary["mean"], "fmt": "fmt_numeric" }, { "name": "MAD", "value": summary["mad"], "fmt": "fmt_numeric" }, { "name": "Skewness", "value": summary["skew"], "fmt": "fmt_numeric" }, { "name": "Sum", "value": summary["sum"], "fmt": "fmt_numeric" }, { "name": "Variance", "value": summary["var"], "fmt": "fmt_numeric" }, ], } # TODO: Make sections data structure # statistics = ItemRenderer( # 'statistics', # 'Statistics', # 'table', # [ # quantile_statistics, # descriptive_statistics # ] # ) seqs = [ Image( histogram(summary["histogram_data"], summary, summary["histogram_bins"]), image_format=image_format, alt="Histogram", caption="<strong>Histogram with fixed size bins</strong> (bins={})" .format(summary["histogram_bins"]), name="Histogram", anchor_id="histogram", ) ] fq = FrequencyTable( template_variables["freq_table_rows"], name="Common values", anchor_id="common_values", ) evs = Sequence( [ FrequencyTable( template_variables["firstn_expanded"], name="Minimum 5 values", anchor_id="firstn", ), FrequencyTable( template_variables["lastn_expanded"], name="Maximum 5 values", anchor_id="lastn", ), ], sequence_type="tabs", name="Extreme values", anchor_id="extreme_values", ) if "histogram_bins_bayesian_blocks" in summary: histo_dyn = Image( histogram( summary["histogram_data"], summary, summary["histogram_bins_bayesian_blocks"], ), image_format=image_format, alt="Histogram", caption= '<strong>Histogram with variable size bins</strong> (bins={}, <a href="https://ui.adsabs.harvard.edu/abs/2013ApJ...764..167S/abstract" target="_blank">"bayesian blocks"</a> binning strategy used)' .format( fmt_array(summary["histogram_bins_bayesian_blocks"], threshold=5)), name="Dynamic Histogram", anchor_id="dynamic_histogram", ) seqs.append(histo_dyn) template_variables["bottom"] = Sequence( [ # statistics, Sequence(seqs, sequence_type="tabs", name="Histogram(s)", anchor_id="histograms"), fq, evs, ], sequence_type="tabs", anchor_id=summary["varid"], ) return template_variables
def render_real(summary): varid = summary["varid"] template_variables = render_common(summary) image_format = config["plot"]["image_format"].get(str) if summary["min"] >= 0: name = "Real number (ℝ<sub>≥0</sub>)" else: name = "Real number (ℝ)" # Top info = VariableInfo( summary["varid"], summary["varname"], name, summary["warnings"], summary["description"], ) table1 = Table([ { "name": "Distinct count", "value": summary["n_unique"], "fmt": "fmt", "alert": "n_unique" in summary["warn_fields"], }, { "name": "Unique (%)", "value": summary["p_unique"], "fmt": "fmt_percent", "alert": "p_unique" in summary["warn_fields"], }, { "name": "Missing", "value": summary["n_missing"], "fmt": "fmt", "alert": "n_missing" in summary["warn_fields"], }, { "name": "Missing (%)", "value": summary["p_missing"], "fmt": "fmt_percent", "alert": "p_missing" in summary["warn_fields"], }, { "name": "Infinite", "value": summary["n_infinite"], "fmt": "fmt", "alert": "n_infinite" in summary["warn_fields"], }, { "name": "Infinite (%)", "value": summary["p_infinite"], "fmt": "fmt_percent", "alert": "p_infinite" in summary["warn_fields"], }, ]) table2 = Table([ { "name": "Mean", "value": summary["mean"], "fmt": "fmt", "alert": False }, { "name": "Minimum", "value": summary["min"], "fmt": "fmt", "alert": False }, { "name": "Maximum", "value": summary["max"], "fmt": "fmt", "alert": False }, { "name": "Zeros", "value": summary["n_zeros"], "fmt": "fmt", "alert": "n_zeros" in summary["warn_fields"], }, { "name": "Zeros (%)", "value": summary["p_zeros"], "fmt": "fmt_percent", "alert": "p_zeros" in summary["warn_fields"], }, { "name": "Memory size", "value": summary["memory_size"], "fmt": "fmt_bytesize", "alert": False, }, ]) histogram_bins = 10 # TODO: replace with SmallImage... mini_histo = Image( mini_histogram(summary["histogram_data"], summary, histogram_bins), image_format=image_format, alt="Mini histogram", ) template_variables["top"] = Container([info, table1, table2, mini_histo], sequence_type="grid") quantile_statistics = Table( [ { "name": "Minimum", "value": summary["min"], "fmt": "fmt_numeric" }, { "name": "5-th percentile", "value": summary["5%"], "fmt": "fmt_numeric" }, { "name": "Q1", "value": summary["25%"], "fmt": "fmt_numeric" }, { "name": "median", "value": summary["50%"], "fmt": "fmt_numeric" }, { "name": "Q3", "value": summary["75%"], "fmt": "fmt_numeric" }, { "name": "95-th percentile", "value": summary["95%"], "fmt": "fmt_numeric" }, { "name": "Maximum", "value": summary["max"], "fmt": "fmt_numeric" }, { "name": "Range", "value": summary["range"], "fmt": "fmt_numeric" }, { "name": "Interquartile range (IQR)", "value": summary["iqr"], "fmt": "fmt_numeric", }, ], name="Quantile statistics", ) descriptive_statistics = Table( [ { "name": "Standard deviation", "value": summary["std"], "fmt": "fmt_numeric", }, { "name": "Coefficient of variation (CV)", "value": summary["cv"], "fmt": "fmt_numeric", }, { "name": "Kurtosis", "value": summary["kurtosis"], "fmt": "fmt_numeric" }, { "name": "Mean", "value": summary["mean"], "fmt": "fmt_numeric" }, { "name": "Median Absolute Deviation (MAD)", "value": summary["mad"], "fmt": "fmt_numeric", }, { "name": "Skewness", "value": summary["skewness"], "fmt": "fmt_numeric", "class": "alert" if "skewness" in summary["warn_fields"] else "", }, { "name": "Sum", "value": summary["sum"], "fmt": "fmt_numeric" }, { "name": "Variance", "value": summary["variance"], "fmt": "fmt_numeric" }, ], name="Descriptive statistics", ) statistics = Container( [quantile_statistics, descriptive_statistics], anchor_id=f"{varid}statistics", name="Statistics", sequence_type="grid", ) seqs = [ Image( histogram(summary["histogram_data"], summary, histogram_bins), image_format=image_format, alt="Histogram", caption= f"<strong>Histogram with fixed size bins</strong> (bins={histogram_bins})", name="Histogram", anchor_id=f"{varid}histogram", ) ] fq = FrequencyTable( template_variables["freq_table_rows"], name="Common values", anchor_id=f"{varid}common_values", ) evs = Container( [ FrequencyTable( template_variables["firstn_expanded"], name="Minimum 5 values", anchor_id=f"{varid}firstn", ), FrequencyTable( template_variables["lastn_expanded"], name="Maximum 5 values", anchor_id=f"{varid}lastn", ), ], sequence_type="tabs", name="Extreme values", anchor_id=f"{varid}extreme_values", ) if "histogram_bins_bayesian_blocks" in summary: histo_dyn = Image( histogram( summary["histogram_data"], summary, summary["histogram_bins_bayesian_blocks"], ), image_format=image_format, alt="Histogram", caption= '<strong>Histogram with variable size bins</strong> (bins={}, <a href="https://ui.adsabs.harvard.edu/abs/2013ApJ...764..167S/abstract" target="_blank">"bayesian blocks"</a> binning strategy used)' .format( fmt_array(summary["histogram_bins_bayesian_blocks"], threshold=5)), name="Dynamic Histogram", anchor_id=f"{varid}dynamic_histogram", ) seqs.append(histo_dyn) template_variables["bottom"] = Container( [ statistics, Container( seqs, sequence_type="tabs", name="Histogram(s)", anchor_id=f"{varid}histograms", ), fq, evs, ], sequence_type="tabs", anchor_id=f"{varid}bottom", ) return template_variables
def test_fmt_array(array, threshold, expected): assert fmt_array(array, threshold) == expected