コード例 #1
0
def amat(close=None, fast=None, slow=None, mamode=None, lookback=None, offset=None, **kwargs):
    """Indicator: Archer Moving Averages Trends (AMAT)"""
    # Validate Arguments
    close = verify_series(close)
    fast = int(fast) if fast and fast > 0 else 8
    slow = int(slow) if slow and slow > 0 else 21
    lookback = int(lookback) if lookback and lookback > 0 else 2
    mamode = mamode.lower() if mamode else "ema"
    offset = get_offset(offset)

    # Calculate Result
    if mamode == "hma":
        fast_ma = hma(close=close, length=fast, **kwargs)
        slow_ma = hma(close=close, length=slow, **kwargs)
    elif mamode == "linreg":
        fast_ma = linreg(close=close, length=fast, **kwargs)
        slow_ma = linreg(close=close, length=slow, **kwargs)
    elif mamode == "rma":
        fast_ma = rma(close=close, length=fast, **kwargs)
        slow_ma = rma(close=close, length=slow, **kwargs)
    elif mamode == "sma":
        fast_ma = sma(close=close, length=fast, **kwargs)
        slow_ma = sma(close=close, length=slow, **kwargs)
    elif mamode == "wma":
        fast_ma = wma(close=close, length=fast, **kwargs)
        slow_ma = wma(close=close, length=slow, **kwargs)
    else:  # "ema"
        fast_ma = ema(close=close, length=fast, **kwargs)
        slow_ma = ema(close=close, length=slow, **kwargs)

    mas_long = long_run(fast_ma, slow_ma, length=lookback)
    mas_short = short_run(fast_ma, slow_ma, length=lookback)

    # Offset
    if offset != 0:
        mas_long = mas_long.shift(offset)
        mas_short = mas_short.shift(offset)

    # # Handle fills
    if "fillna" in kwargs:
        mas_long.fillna(kwargs["fillna"], inplace=True)
        mas_short.fillna(kwargs["fillna"], inplace=True)

    if "fill_method" in kwargs:
        mas_long.fillna(method=kwargs["fill_method"], inplace=True)
        mas_short.fillna(method=kwargs["fill_method"], inplace=True)

    # Prepare DataFrame to return
    amatdf = DataFrame({
        f"AMAT_{mas_long.name}": mas_long,
        f"AMAT_{mas_short.name}": mas_short
    })

    # Name and Categorize it
    amatdf.name = f"AMAT_{mamode.upper()}_{fast}_{slow}_{lookback}"
    amatdf.category = "trend"

    return amatdf
コード例 #2
0
def qstick(open_, close, length=None, offset=None, **kwargs):
    """Indicator: Q Stick"""
    # Validate Arguments
    length = int(length) if length and length > 0 else 10
    ma = kwargs.pop("ma", "sma")
    open_ = verify_series(open_, length)
    close = verify_series(close, length)
    offset = get_offset(offset)

    if open_ is None or close is None: return

    # Calculate Result
    diff = non_zero_range(close, open_)

    if ma == "dema":
        qstick = dema(diff, length=length, **kwargs)
    elif ma == "ema":
        qstick = ema(diff, length=length, **kwargs)
    elif ma == "hma":
        qstick = hma(diff, length=length)
    elif ma == "rma":
        qstick = rma(diff, length=length)
    else:  # "sma"
        qstick = sma(diff, length=length)

    # Offset
    if offset != 0:
        qstick = qstick.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        qstick.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        qstick.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    qstick.name = f"QS_{length}"
    qstick.category = "trend"

    return qstick
コード例 #3
0
ファイル: bias.py プロジェクト: zeta1999/pandas-ta
def bias(close, length=None, mamode=None, offset=None, **kwargs):
    """Indicator: Bias (BIAS)"""
    # Validate Arguments
    close = verify_series(close)
    length = int(length) if length and length > 0 else 26
    mamode = mamode.lower() if mamode else None
    offset = get_offset(offset)

    # Calculate Result
    if mamode == "ema":
        ma = ema(close, length=length, **kwargs)
    elif mamode == "hma":
        ma = hma(close, length=length, **kwargs)
    elif mamode == "rma":
        ma = rma(close, length=length, **kwargs)
    elif mamode == "wma":
        ma = wma(close, length=length, **kwargs)
    else:  # "sma"
        ma = sma(close, length=length, **kwargs)

    bias = (close / ma) - 1

    # Offset
    if offset != 0:
        bias = bias.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        bias.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        bias.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    bias.name = f"BIAS_{ma.name}"
    bias.category = "momentum"

    return bias
コード例 #4
0
ファイル: aobv.py プロジェクト: xmrfate/AlgoTrading
def aobv(close,
         volume,
         fast=None,
         slow=None,
         mamode=None,
         max_lookback=None,
         min_lookback=None,
         offset=None,
         **kwargs):
    """Indicator: Archer On Balance Volume (AOBV)"""
    # Validate arguments
    close = verify_series(close)
    volume = verify_series(volume)
    offset = get_offset(offset)
    fast = int(fast) if fast and fast > 0 else 4
    slow = int(slow) if slow and slow > 0 else 12
    max_lookback = int(
        max_lookback) if max_lookback and max_lookback > 0 else 2
    min_lookback = int(
        min_lookback) if min_lookback and min_lookback > 0 else 2
    if slow < fast:
        fast, slow = slow, fast
    mamode = mamode.upper() if mamode else None
    run_length = kwargs.pop("run_length", 2)

    # Calculate Result
    obv_ = obv(close=close, volume=volume, **kwargs)
    if mamode is None or mamode == "EMA":
        mamode = "EMA"
        maf = ema(close=obv_, length=fast, **kwargs)
        mas = ema(close=obv_, length=slow, **kwargs)
    elif mamode == "HMA":
        maf = hma(close=obv_, length=fast, **kwargs)
        mas = hma(close=obv_, length=slow, **kwargs)
    elif mamode == "LINREG":
        maf = linreg(close=obv_, length=fast, **kwargs)
        mas = linreg(close=obv_, length=slow, **kwargs)
    elif mamode == "SMA":
        maf = sma(close=obv_, length=fast, **kwargs)
        mas = sma(close=obv_, length=slow, **kwargs)
    elif mamode == "WMA":
        maf = wma(close=obv_, length=fast, **kwargs)
        mas = wma(close=obv_, length=slow, **kwargs)

    # When MAs are long and short
    obv_long = long_run(maf, mas, length=run_length)
    obv_short = short_run(maf, mas, length=run_length)

    # Offset
    if offset != 0:
        obv_ = obv_.shift(offset)
        maf = maf.shift(offset)
        mas = mas.shift(offset)
        obv_long = obv_long.shift(offset)
        obv_short = obv_short.shift(offset)

    # # Handle fills
    if "fillna" in kwargs:
        obv_.fillna(kwargs["fillna"], inplace=True)
        maf.fillna(kwargs["fillna"], inplace=True)
        mas.fillna(kwargs["fillna"], inplace=True)
        obv_long.fillna(kwargs["fillna"], inplace=True)
        obv_short.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        obv_.fillna(method=kwargs["fill_method"], inplace=True)
        maf.fillna(method=kwargs["fill_method"], inplace=True)
        mas.fillna(method=kwargs["fill_method"], inplace=True)
        obv_long.fillna(method=kwargs["fill_method"], inplace=True)
        obv_short.fillna(method=kwargs["fill_method"], inplace=True)

    # Prepare DataFrame to return
    data = {
        obv_.name: obv_,
        f"OBV_min_{min_lookback}": obv_.rolling(min_lookback).min(),
        f"OBV_max_{max_lookback}": obv_.rolling(max_lookback).max(),
        f"OBV_{maf.name}": maf,
        f"OBV_{mas.name}": mas,
        f"AOBV_LR_{run_length}": obv_long,
        f"AOBV_SR_{run_length}": obv_short,
    }
    aobvdf = DataFrame(data)

    # Name and Categorize it
    aobvdf.name = (
        f"AOBV_{mamode}_{fast}_{slow}_{min_lookback}_{max_lookback}_{run_length}"
    )
    aobvdf.category = "volume"

    return aobvdf
コード例 #5
0
ファイル: qqe.py プロジェクト: zeta1999/pandas-ta
def qqe(close, length=None, smooth=None, factor=None, mamode=None, drift=None, offset=None, **kwargs):
    """Indicator: Quantitative Qualitative Estimation (QQE)"""
    # Validate arguments
    close = verify_series(close)
    length = int(length) if length and length > 0 else 14
    smooth = int(smooth) if smooth and smooth > 0 else 5
    factor = float(factor) if factor else 4.236
    mamode = mamode.lower() if mamode else "ema"
    drift = get_drift(drift)
    offset = get_offset(offset)

    # Calculate Result
    rsi_ = rsi(close, length)
    if mamode == "hma":
        rsi_ma, _mode = hma(rsi_, length=smooth), "h"
    elif mamode == "rma":
        rsi_ma, _mode = rma(rsi_, length=smooth), "r"
    elif mamode == "sma":
        rsi_ma, _mode = sma(rsi_, length=smooth), "s"
    elif mamode == "wma":
        rsi_ma, _mode = wma(rsi_, length=smooth), "w"
    else: # "ema"
        rsi_ma, _mode = ema(rsi_, length=smooth), ""

    # RSI MA True Range
    rsi_ma_tr = rsi_ma.diff(drift).abs()

    # Double Smooth the RSI MA True Range using Wilder's Length with a default
    # width of 4.236.
    wilders_length = 2 * length - 1
    smoothed_rsi_tr_ma = ema(rsi_ma_tr, length=wilders_length)
    dar = factor * ema(smoothed_rsi_tr_ma, length=wilders_length)

    # Create the Upper and Lower Bands around RSI MA.
    upperband = rsi_ma + dar
    lowerband = rsi_ma - dar

    m = close.size
    long = Series(0, index=close.index)
    short = Series(0, index=close.index)
    trend = Series(1, index=close.index)
    qqe = Series(rsi_ma.iloc[0], index=close.index)
    qqe_long = Series(npNaN, index=close.index)
    qqe_short = Series(npNaN, index=close.index)

    for i in range(1, m):
        c_rsi, p_rsi = rsi_ma.iloc[i], rsi_ma.iloc[i - 1]
        c_long, p_long = long.iloc[i - 1], long.iloc[i - 2]
        c_short, p_short = short.iloc[i - 1], short.iloc[i - 2]

        # Long Line
        if p_rsi > c_long and c_rsi > c_long:
            long.iloc[i] = npMaximum(c_long, lowerband.iloc[i])
        else:
            long.iloc[i] = lowerband.iloc[i]

        # Short Line
        if p_rsi < c_short and c_rsi < c_short:
            short.iloc[i] = npMinimum(c_short, upperband.iloc[i])
        else:
            short.iloc[i] = upperband.iloc[i]

        # Trend & QQE Calculation
        # Long: Current RSI_MA value Crosses the Prior Short Line Value
        # Short: Current RSI_MA Crosses the Prior Long Line Value
        if (c_rsi > c_short and p_rsi < p_short) or (c_rsi <= c_short and p_rsi >= p_short):
            trend.iloc[i] = 1
            qqe.iloc[i] = qqe_long.iloc[i] = long.iloc[i]
        elif (c_rsi > c_long and p_rsi < p_long) or (c_rsi <= c_long and p_rsi >= p_long):
            trend.iloc[i] = -1
            qqe.iloc[i] = qqe_short.iloc[i] = short.iloc[i]
        else:
            trend.iloc[i] = trend.iloc[i - 1]
            if trend.iloc[i] == 1:
                qqe.iloc[i] = qqe_long.iloc[i] = long.iloc[i]
            else:
                qqe.iloc[i] = qqe_short.iloc[i]  = short.iloc[i]

    # Offset
    if offset != 0:
        rsi_ma = rsi_ma.shift(offset)
        qqe = qqe.shift(offset)
        long = long.shift(offset)
        short = short.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        rsi_ma.fillna(kwargs["fillna"], inplace=True)
        qqe.fillna(kwargs["fillna"], inplace=True)
        long.fillna(kwargs["fillna"], inplace=True)
        short.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        rsi_ma.fillna(method=kwargs["fill_method"], inplace=True)
        qqe.fillna(method=kwargs["fill_method"], inplace=True)
        long.fillna(method=kwargs["fill_method"], inplace=True)
        short.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    _props = f"{_mode}_{length}_{smooth}_{factor}"
    qqe.name = f"QQE{_props}"
    rsi_ma.name = f"QQE{_props}_RSI{_mode.upper()}MA"
    long.name = f"QQEl{_props}"
    short.name = f"QQEs{_props}"
    qqe.category = rsi_ma.category = "momentum"
    long.category = short.category = qqe.category

    # Prepare DataFrame to return
    data = {
        qqe.name: qqe, rsi_ma.name: rsi_ma,
        # long.name: long, short.name: short
        long.name: qqe_long, short.name: qqe_short
    }
    df = DataFrame(data)
    df.name = f"QQE{_props}"
    df.category = qqe.category

    return df