# Decentralised water storage model: master file - Neal Hughes # Model testing from __future__ import division import numpy as np from para import Para import model import time from econlearn.samplegrid import test import pylab if __name__ == '__main__': para = Para(rebuild=True) para.set_property_rights(scenario='RS') para.ch7['inflow_share'] = 0 para.ch7['capacity_share'] = 0 mod = model.Model(para, ch7=True, turn_off_env=True) #mod.plannerQV_ch7(T=125000, stage2=True, d=0.2, simulate=True, envoff=True) #print mod.sim.ITEROLD #stats_envoff = mod.sim.stats #series_envoff = mod.sim.series #del mod #mod = model.Model(para, ch7=True, turn_off_env=False) #mod.plannerQV_ch7(T=125000, stage2=True, d=0.2, simulate=True, envoff=False) #print mod.sim.ITEROLD #stats = mod.sim.stats
NCI = '/short/fr3/ndh401/chapter6/' out = '/Dropbox/Thesis/IMG/chapter6/' para = Para() scenarios = ['CS'] #['RS-HL-O', 'RS-HL', 'RS-O', 'RS', 'CS', 'CS-O', 'CS-HL', 'CS-HL-O', 'CS-U'] results = {scen: 0 for scen in scenarios} Lambda = {scen: 0 for scen in scenarios} LambdaK = {scen: 0 for scen in scenarios} #========================================== # Central case (with trade) #========================================== for scen in scenarios: para.set_property_rights(scenario=scen) para.aproximate_shares(nonoise=True) mod = Model(para) results[scen], Lambda[scen], LambdaK[scen] = mod.chapter6(sens=True) del mod #chapter6.tables(results, scenarios, Lambda, LambdaK, label='central') #with open(home + folder + 'central_result.pkl', 'wb') as f: # pickle.dump(results, f) # f.close()
# Decentralised water storage model: master file - Neal Hughes # Chapter 5 model runs from __future__ import division import numpy as np from para import Para import model import pickle para = Para() para.central_case(N=100, printp=False) para.set_property_rights(scenario='OA') para.solve_para() home = '/home/nealbob' folder = '/Dropbox/Model/results/chapter5/' scenarios = ['CS', 'SWA', 'OA', 'NS', 'CS-SL', 'SWA-SL', 'CS-SWA'] results = {scen: 0 for scen in scenarios} policies = {scen: 0 for scen in scenarios} for i in range(1): #try: para.central_case(N = 100) para.t_cost = 100000000000 para.aproximate_shares(nonoise=True) #if i > 0: # para.randomize(N = 100) # para.aproximate_shares()
NCIhome = '/short/fr3/ndh401' NCIfolder = '/chapter7/' #========================================== # NCI general case - initialisation #========================================== try: arg1 = sys.argv[1] except IndexError: print "Provide arguments <runnum> <numofjobs> <scenario>" para = Para() para.central_case(N = 100) para.randomize() para.set_property_rights(scenario='CS') run_no = int(arg1) print '============================================================' print 'Initialisation for run no: ' + str(run_no) print '============================================================' mod = Model(para, ch7=True, turn_off_env=True) E_lambda = mod.chapter7_initialise() print '============================================================' print 'E_lambda: ' + str(E_lambda) print '============================================================' para.E_lambda_hat = E_lambda