コード例 #1
0
    def get_multiline_stat_object(name, list_value, labels=None):
        """
        Create multiline object from list of values. It outputs mulitline from values and legends is index of the values - i.e. 0, 1, ..
        :param name: Name of stat
        :param list_value: list of values to embed in multiline value.
        :return: MLOps Multiline Value object, timeseries stat category
        """
        if isinstance(list_value, list) or isinstance(list_value, np.ndarray):
            category = StatCategory.TIME_SERIES

            # if labels are not provided then it will be 0, 1, .. length of list - 1
            if labels is None:
                labels = range(len(list_value))
            labels = list(map(lambda x: str(x).strip(), labels))

            if (len(labels) == len(list_value)):
                multiline_object = MultiLineGraph() \
                    .name(name) \
                    .labels(labels)

                multiline_object.data(list(list_value))

                return multiline_object, category
            else:
                raise MLOpsStatisticsException(
                    "size of labels associated with list of values to get does not match. {}!={}"
                    .format(len(labels), len(list_value)))
        else:
            raise MLOpsStatisticsException(
                "list_value has to be of type list or nd array but got {}".
                format(type(list_value)))
コード例 #2
0
ファイル: stats_helper.py プロジェクト: vakjha1/mlpiper
    def _set_classification_stat(self, name, data, model_id, timestamp,
                                 **kwargs):
        mlops_stat_object = None
        category = StatCategory.TIME_SERIES

        self._logger.debug(
            "{} predefined stat called: name: {} data_type: {}".format(
                Constants.OFFICIAL_NAME, name, type(data)))

        mlops_stat_object, category = \
            ClassificationStatObjectFactory.get_stat_object(name, data=data, **kwargs)

        if mlops_stat_object is not None:
            self.set_stat(
                name=name,
                data=mlops_stat_object,
                model_id=model_id,
                # type of stat will be time series by default
                category=category,
                timestamp=timestamp,
                **kwargs)
        else:
            error = "{} predefined stat cannot be output as error happened in creating mlops stat object from {}" \
                .format(name, data)

            raise MLOpsStatisticsException(error)
コード例 #3
0
    def get_mlops_classification_report_stat_object(**kwargs):
        """
        Method creates MLOps table value stat object from classification report string.
        It is not recommended to access this method without understanding single value data structure that it is returning.
        :param kwargs: classification report string.
        :return: Table Value stat object which has classification report embedded inside
        """
        cr = kwargs.get('data', None)

        if cr is not None:
            if isinstance(cr, string_types):
                try:
                    array_report = list()
                    for row in cr.split("\n"):
                        parsed_row = [x for x in row.split("  ") if len(x) > 0]
                        if len(parsed_row) > 0:
                            array_report.append(parsed_row)

                    first_header_should_be = [
                        'precision', 'recall', 'f1-score', 'support'
                    ]

                    table_object, category = MLStatObjectCreator \
                        .get_table_value_stat_object(name=ClassificationMetrics.CLASSIFICATION_REPORT.value,
                                                     list_2d=array_report,
                                                     match_header_pattern=first_header_should_be)

                    return table_object, category

                except Exception as e:
                    raise MLOpsStatisticsException(
                        "error happened while outputting classification report as table. Got classification string {}.\n error: {}"
                        .format(cr, e))

            else:
                raise MLOpsStatisticsException(
                    "type of classification should be of string, but received {}"
                    .format(type(cr)))
        else:
            raise MLOpsStatisticsException \
                ("cr object for outputting classification report cannot be None.")