コード例 #1
0
def get_clf_controller( x,t):

	LgV = dynamics.get_LgV( x,t) 
	LfV = dynamics.get_LfV( x,t)
	V   = dynamics.get_V( x,t)
	lambda_v = util.get_stabilization_rate()

	# cvxpy
	u = cp.Variable(param.get('m'))
	delta_v = cp.Variable()
	constraints = [ 
		LfV + LgV*u + lambda_v * V <= delta_v,
		cp.abs( u)  <= param.get('control_max'),
		delta_v >= 0
	]
	obj = cp.Minimize( \
		cp.sum_squares(u) + \
		param.get('p_v') * delta_v \
		)
	
	prob = cp.Problem(obj, constraints)
	prob.solve(verbose = False, solver = cp.GUROBI)

	u = np.array(u.value)
	return u
コード例 #2
0
ファイル: plotter.py プロジェクト: bpriviere/network_control
def debug_scp_iteration_plot( tx_next, u_next, xbar, ubar, x0, T, i_iter):

	unl = u_next
	x_curr = x0
	
	Xnl = []
	Vnl_nlx = []
	Vnl_lx = []
	tV_nlx = []
	tV_lx = []

	for k,t in enumerate(T):
		x_next = x_curr + dynamics.get_dxdt( x_curr, unl[:,k], t) * param.get('dt')
		R_k, w_k = dynamics.get_linear_lyapunov( xbar[:,k], ubar[:,k], t)
		Vnl_nlx.append( dynamics.get_V( x_curr, t))
		Vnl_lx.append( dynamics.get_V( tx_next[:,k],t))
		tV_nlx.append( np.matmul( R_k, x_curr) + w_k )
		tV_lx.append( np.matmul( R_k, tx_next[:,k]) + w_k)		
		Xnl.append( x_curr)
		x_curr = x_next

	Xnl = np.asarray(Xnl)
	Vnl_nlx = np.asarray(Vnl_nlx)
	Vnl_lx = np.asarray(Vnl_lx)
	tV_nlx = np.asarray(tV_nlx)
	tV_lx = np.asarray(tV_lx)

	plot_scp_iteration_state( Xnl, np.transpose(tx_next,(1,0,2)), \
		np.transpose(xbar,(1,0,2)), T, title = str(param.get('controller')) + ' State' + \
		'\nIteration: ' + str(i_iter) + '\nTime: ' + str(T[0]))

	plot_scp_iteration_lyapunov( np.squeeze(Vnl_nlx), np.squeeze(Vnl_lx), np.squeeze( tV_nlx), \
		np.squeeze( tV_lx), T, title = str(param.get('controller')) + ' Lyapunov' + \
		'\nIteration: ' + str(i_iter) + '\nTime: ' + str(T[0]))
コード例 #3
0
def get_linear_dynamics( xbar, ubar, t):

	def prod(dgdx, u):
		s = 0
		for i in range(len(u)):
			s += dgdx[:,i,:]*u[i]
		return np.squeeze(s)

	dfdx = get_dfdx(xbar,t)
	dgdx = get_dgdx(xbar)
	g = get_g(xbar)
	f = get_f(xbar)

	# continuous time 
	F = dfdx + prod(dgdx,ubar)
	B = g
	d = f + np.dot( g, ubar) \
		- np.dot( dfdx, xbar) \
		- np.dot( prod( dgdx, ubar), xbar) \
		- np.dot( g, ubar)

	# discrete time
	F_k = np.eye(param.get('n')) + F*param.get('dt') 
	B_k = B*param.get('dt')
	d_k = d*param.get('dt')

	return F_k, B_k, d_k
コード例 #4
0
ファイル: dynamics.py プロジェクト: bpriviere/network_control
def get_T(x,t):
	# add phase shift for all agents
	T = param.get('radius_d')[0]*util.get_R(param.get('phase_d')[0])
	for i in range(1,param.get('na')): 
		r_i = param.get('radius_d')[i]
		phi_i = param.get('phase_d')[i]
		T = block_diag(T, r_i*util.get_R(phi_i))
	return T
コード例 #5
0
ファイル: dynamics.py プロジェクト: bpriviere/network_control
def get_f(x,t):
	# single integrator dynamics
	pi_pv = util.permute_to_pv()
	I = np.eye(param.get('nd')*param.get('ni'))
	F = np.vstack((
		np.hstack((0.*I,1.*I)),
		np.hstack((0.*I,0.*I))))

	return np.dot(np.dot(np.dot(
		pi_pv.T, F), pi_pv), x)
コード例 #6
0
def permute_to_pv():
	pi = np.zeros((2*param.get('ni'),2*param.get('ni')))
	for i in range(param.get('ni')):
		p1_idx = 2*i
		v1_idx = p1_idx + 1
		p2_idx = i
		v2_idx = i + param.get('ni')
		pi[p2_idx, p1_idx] = 1 
		pi[v2_idx, v1_idx] = 1 

	return np.kron( pi, np.eye(param.get('nd')))
コード例 #7
0
def get_min_dist(x):
    min_dist = np.inf
    for i in range(param.get('ni')):
        pose_i = np.dot(get_p_i(i), x)
        for j in range(param.get('ni')):
            if i is not j:
                pose_j = np.dot(get_p_i(j), x)
                dist = np.linalg.norm(pose_i - pose_j)
                if dist < min_dist:
                    min_dist = dist
    return min_dist
コード例 #8
0
def get_pd_t(t):

    if param.get('case_xd') == 0:
        return np.ones((2, 1))
    elif param.get('case_xd') == 1:
        return t * np.ones((2, 1))
    elif param.get('case_xd') == 2:
        return np.array([
            np.cos(2 * np.pi / param.get('tf') * t),
            np.sin(2 * np.pi / param.get('tf') * t)
        ])
    return
コード例 #9
0
def get_plot_lim(X, T):
    xmin = np.inf
    ymin = np.inf
    xmax = -np.inf
    ymax = -np.inf

    # check agents
    for t in range(len(T)):
        x = X[t]
        for i in range(param.get('ni')):
            pose_i = get_p(x, i)
            if xmin > pose_i[0]:
                xmin = pose_i[0]
            if xmax < pose_i[0]:
                xmax = pose_i[0]
            if ymin > pose_i[1]:
                ymin = pose_i[1]
            if ymax < pose_i[1]:
                ymax = pose_i[1]

    # check desired
    for t in range(len(T)):
        pose_d = param.get('pd')[t, :]
        if xmin > pose_d[0]:
            xmin = pose_d[0]
        if xmax < pose_d[0]:
            xmax = pose_d[0]
        if ymin > pose_d[1]:
            ymin = pose_d[1]
        if ymax < pose_d[1]:
            ymax = pose_d[1]

    # add buffer
    if xmin < 0:
        xmin = xmin * (1 + param.get('plot_buffer'))
    else:
        xmin = xmin * (1 - param.get('plot_buffer'))
    if ymin < 0:
        ymin = ymin * (1 + param.get('plot_buffer'))
    else:
        ymin = ymin * (1 - param.get('plot_buffer'))
    if xmax < 0:
        xmax = xmax * (1 - param.get('plot_buffer'))
    else:
        xmax = xmax * (1 + param.get('plot_buffer'))
    if ymax < 0:
        ymax = ymax * (1 - param.get('plot_buffer'))
    else:
        ymax = ymax * (1 + param.get('plot_buffer'))

    return xmin, xmax, ymin, ymax
コード例 #10
0
def main():

    device = "cpu"
    model = GainsNet2()

    train_dataset = make_dataset()
    test_dataset = make_dataset()

    for epoch in range(param.get('gains_epochs')):
        print('Epoch: ', epoch + 1)
        train(model, train_dataset)
        test(model, test_dataset)

    torch.save(model, param.get('gains_model_fn'))
コード例 #11
0
def train(model, loader):

    optimizer = torch.optim.Adam(model.parameters(), lr=param.get('gains_lr'))
    loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss
    epoch_loss = 0
    for step, (b_x, b_y) in enumerate(loader):  # for each training step
        prediction = model(b_x)  # input x and predict based on x
        loss = loss_func(prediction, b_y)  # must be (1. nn output, 2. target)
        optimizer.zero_grad()  # clear gradients for next train
        loss.backward()  # backpropagation, compute gradients
        optimizer.step()  # apply gradients
        epoch_loss += loss

    print('   Train Epoch Loss: ',
          epoch_loss / step / param.get('gains_batch_size'))
コード例 #12
0
ファイル: plotter.py プロジェクト: bpriviere/network_control
def make_gif(X,T):

	fig, ax = plt.subplots()
	xmin,xmax,ymin,ymax = util.get_plot_lim(X,T)

	def animate(i):
		plt.cla()
		ax.set_xlim(xmin,xmax)
		ax.set_ylim(ymin,ymax)
		plt.title('State Space at t = ' + str(np.round(T[i],2)))
		return plot_ss(X[i],i,scat),

	scat = plt.scatter([],[])
	step = np.round(len(T)/param.get('nframes_gif'))
	anim = FuncAnimation(fig, animate, np.arange(0,len(T),step,int))
	anim.save( param.get('fn_gif'))
コード例 #13
0
ファイル: plotter.py プロジェクト: bpriviere/network_control
def plot_U(U,T, title = 'Control Input'):
	fig, ax = plt.subplots()

	for i in range(param.get('m')):
		ax.plot(T,U[:,i],label = 'U' + str(i))
	plt.title(title)
	plt.legend()
コード例 #14
0
def get_dynamics_u(x,t):

	# get
	A = dynamics.get_A(x)
	pi_pv = util.permute_to_pv()

	# formation task assignment 
	pi_ta_nd = np.kron(ta.get_centralized_ta(x,t), \
		np.eye(param.get('nd')))
	pi_ta_dof = np.kron(ta.get_centralized_ta(x,t), \
		np.eye(param.get('dof')))
	T = np.dot(np.dot(
		pi_ta_nd.T, dynamics.get_T(x,t)), pi_ta_nd)	
	Tv = np.dot(np.dot(
		pi_ta_dof.T, dynamics.get_Tv(x,t)), pi_ta_dof)
 
	# leader/basis	
	x_l = dynamics.get_xl(x,t)
	x_b = dynamics.get_xb(x,t)
	my_1 = np.kron( np.ones((param.get('ni'),1)),\
		np.eye(param.get('dof')))

	# transform state into global coordinate frame
	z = x - np.dot(my_1,x_l) - \
		np.dot(np.dot(Tv, my_1),x_b)	

	# Laplacian
	L = dynamics.get_L(x)
	L = np.dot(
		np.kron(L, np.eye(param.get('nd'))), T)

	I = np.eye(param.get('ni')*param.get('nd')) 

	U = np.dot(np.dot(
		np.hstack((-param.get('k1')*(L+I), -param.get('k2')*(L+I))),
		pi_pv), z)

	# collision avoidance
	# not implemented 
	# for i in range(param.get('ni')):
	# 	p_i = np.dot(util.get_p_i(i),x)
	# 	for j in range(param.get('ni')):
	# 		p_j = np.dot(util.get_p_i(j),x)
	# 		dist = np.linalg.norm( p_i - p_j)

	# 		idx = i*param.get('nd') + np.arange(0, param.get('nd'))

	# 		U[idx] = U[idx] - \
	# 			0*(param.get('k_c')*(p_j-p_i)/(dist*(dist - param.get('R_safe'))))

	return U
コード例 #15
0
ファイル: dynamics.py プロジェクト: bpriviere/network_control
def get_A(x):
	# Adjacency matrix
	
	P = np.dot(util.get_p(),x)	
	X = np.dot( 
		np.ones((param.get('ni'),1)),
		util.to_vec(P[np.mod(np.arange(0,len(P)),2)==False]).T)
	Y = np.dot( 
		np.ones((param.get('ni'),1)),
		util.to_vec(P[np.mod(np.arange(0,len(P)),2)==True]).T)
	D = np.sqrt( 
		np.power( X - X.T + 1e-9,2) + 
		np.power( Y - Y.T + 1e-9,2))
	A = np.exp( -param.get('lambda_a')*D) * \
		1.0 * (D < param.get('R_comm'))
	A = A / np.linalg.norm(A, ord=2, axis=1)
	return A
コード例 #16
0
def get_vdot_a( x):
	
	for i in range(param.get('na')):
		try: 
			vdot_a = np.vstack( (vdot_a, reynolds( x,i)))
		except:
			vdot_a = reynolds( x,i)
	return vdot_a
コード例 #17
0
def save_figs():
	fn = os.path.join( os.getcwd(), param.get('fn_plots'))

	pp = PdfPages(fn)
	for i in plt.get_fignums():
		pp.savefig(plt.figure(i))
		plt.close(plt.figure(i))
	pp.close()
コード例 #18
0
ファイル: plotter.py プロジェクト: bpriviere/network_control
def plot_ss(x,k,scat):

	scat_x = []
	scat_y = []
	scat_c = []
	
	# plot agents
	for i in range(param.get('ni')):
		p_i = util.get_p(x,i)
		scat_x.append(p_i[0])
		scat_y.append(p_i[1])
		if i < param.get('na'):
			scat_c.append(param.get('FreeAgentColor'))
		else:
			scat_c.append(param.get('ControlAgentColor'))
	
	# plot centroid
	my_1 = util.get_my_1()
	p_a = util.get_p_a(x)
	p_c = np.matmul( np.transpose( my_1), p_a)
	scat_x.append( p_c[0])
	scat_y.append( p_c[1])
	scat_c.append( param.get('CentroidColor'))

	# plot desired
	xd = param.get('pd')[k,:]
	scat_x.append( xd[0])
	scat_y.append( xd[1])
	scat_c.append( param.get('DesiredTrajectoryColor'))

	return plt.scatter(np.asarray(scat_x), np.asarray(scat_y), 
		color = scat_c)
コード例 #19
0
def make_dataset():
    model = torch.load(param.get('rl_model_fn'))
    states = []
    actions = []
    for _ in range(param.get('gains_n_data')):
        state = array((
            param.get('sys_pos_bounds') * uniform(-1., 1.),
            param.get('sys_angle_bounds_deg') * uniform(-1., 1.),
            2. * uniform(-1., 1.),
            2. * uniform(-1., 1.),
        ))
        prob = model.pi(torch.from_numpy(state).float())
        m = Categorical(prob)
        action = array(param.get('sys_actions')[m.sample().item()], ndmin=1)
        states.append(state)
        actions.append(action)

    return torch.tensor(states).float(), torch.tensor(actions).float()
コード例 #20
0
def test(model, loader):
    loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss
    epoch_loss = 0
    for step, (b_x, b_y) in enumerate(loader):  # for each training step
        prediction = model(b_x)  # input x and predict based on x
        loss = loss_func(prediction, b_y)  # must be (1. nn output, 2. target)
        epoch_loss += loss
    print('   Test Epoch Loss: ',
          epoch_loss / step / param.get('gains_batch_size'))
コード例 #21
0
ファイル: plotter.py プロジェクト: bpriviere/network_control
def plot_V(V,T,title = 'Lyapunov Convergence'):
	fig, ax = plt.subplots()
	Vdot = np.gradient(V, param.get('dt'), axis = 0)

	ax.plot(T,np.squeeze(V),label = 'V')
	ax.plot(T,np.squeeze(Vdot),label = 'Vdot')
	plt.title(title)
	plt.legend()
	ax.grid(True)
コード例 #22
0
def reynolds( x, i):
	A   = util.get_A(x)
	p_i = np.dot( util.get_p_i(i), x)
	v_i = np.dot( util.get_v_i(i), x)
	a_i = np.zeros((param.get('nd'),1))
	for j in range(param.get('ni')):
		if i is not j:
			p_j = np.dot( util.get_p_i(j), x)
			v_j = np.dot( util.get_v_i(j), x)

			r_ij = p_j - p_i
			dist = np.linalg.norm(r_ij)

			a_i = a_i + A[i,j]*( \
                param.get('kv')*(v_j - v_i) + \
                param.get('kx')*r_ij*(1 - param.get('R_des')/dist) 
                )
	return a_i 
コード例 #23
0
def get_f(x):
	# drift dynamics
	if param.get('model') is 'reynolds':

		# free agents
		for i in range(param.get('na')):
			v_i = np.dot( util.get_v_i(i), x)
			a_i = reynolds( x, i)
			try:
				f = np.vstack( (f, v_i, reynolds( x, i)))
			except:
				f = np.vstack( (v_i, reynolds( x, i))) 

		# control agents
		for i in range(param.get('nb')):
			v_i = np.dot( util.get_v_i(i + param.get('na')), x)
			a_i = np.zeros([param.get('nd'),1])
			f = np.vstack( (f, v_i, a_i))
	return f
コード例 #24
0
def get_A(x):

    A = np.ones([param.get('ni'), param.get('ni')])
    # A = np.zeros([param.get('ni'), param.get('ni')])
    # for i in range(param.get('ni')):
    # 	p_i = np.dot( get_p_i(i), x)
    # 	for j in range(param.get('ni')):
    # 		p_j = np.dot( get_p_i(j), x)
    # 		dist = np.linalg.norm( p_i - p_j)
    # 		if dist < param.get('R_comm'):

    # 			print('Adj')
    # 			print(np.shape(x))
    # 			print(np.shape(p_i))
    # 			print(np.shape(p_j))
    # 			print(np.shape(dist))
    # 			print(param.get('lambda_a'))
    # 			A[i,j] = np.exp( -param.get('lambda_a')*dist)
    # print(A)
    return A
コード例 #25
0
def get_xd():

    pd = []
    vd = []
    ad = []
    for t in param.get('T'):
        pd.append(get_pd_t(t))
        vd.append(get_vd_t(t))
        ad.append(get_ad_t(t))
    param['pd'] = np.asarray(pd)
    param['vd'] = np.asarray(vd)
    param['ad'] = np.asarray(ad)
コード例 #26
0
    def eval(self, x, t):

        if param.get('system').get('name') is 'CartPole':
            xd = array([0, 0, 0, 0])
            error = xd - x

            derivative = 0
            if self.error_prev is not None:
                derivative = (error - self.error_prev) / param.get('dt')

            integral = 0
            if self.integral is not None:
                integral = self.integral + error * param.get('dt')

            pid = param.get('kp')*error \
             + param.get('kv')*derivative \
             + param.get('ki')*integral

            K = ones((1, 4))
            u = dot(K, pid)

            self.integral = integral
            self.error_prev = error

        return u
コード例 #27
0
ファイル: plotter.py プロジェクト: bpriviere/network_control
def plot_cost( C, title = 'Objective Value'):
	fig, ax = plt.subplots()

	prop_cycle = plt.rcParams['axes.prop_cycle']
	colors = prop_cycle.by_key()['color']
	
	for k,u in enumerate(param.get('controllers')):
		ax.axhline( C[k], label = u, c = colors[k])		

	plt.title(title)
	plt.xlabel('Iteration')
	plt.ylabel('Objective')
	plt.legend()
コード例 #28
0
def permute_eta_rows():
    perm_mat = np.zeros( (param.get('nd')*param.get('gamma'), \
     param.get('nd')*param.get('gamma')))
    gamma = param.get('gamma')  # relative degree

    for dim_idx in range(param.get('nd')):
        row_idx = dim_idx * gamma
        for gamma_idx in range(gamma):
            col_idx = gamma_idx * param.get('nd') + dim_idx
            perm_mat[row_idx, col_idx] = 1
            row_idx += 1
    return perm_mat
コード例 #29
0
def test(model, dataset):

    Loss = 0
    loss_func = torch.nn.MSELoss()
    for batch_idx, (data, target) in enumerate(dataset):
        data = torch.from_numpy(data).float()
        target = torch.from_numpy(target).float()
        # prediction = model.calc_action(data)
        prediction = model(data)
        loss = loss_func(prediction,
                         target)  # must be (1. nn output, 2. target)

        if batch_idx % param.get('gains_log_interval') == 0:
            print('   loss: ', loss)
コード例 #30
0
ファイル: test.py プロジェクト: bpriviere/network_control
def fn5():

    util.get_x0()
    util.get_xd()

    x0 = param.get('x0')
    t0 = param.get('T')[0]

    # param['autograd_on'] = True
    # print( dynamics.get_detadx(x0,t0))
    # param['autograd_on'] = False
    # print( dynamics.get_detadx(x0,t0))

    # param['autograd_on'] = True
    # print( dynamics.get_dgdx(x0))
    # param['autograd_on'] = False
    # print( dynamics.get_dgdx(x0))

    print(dynamics.get_dfdx(x0, t0))
    print('\n')
    print(dynamics_v2.get_dfdx(x0, t0))

    print(np.shape(dynamics.get_dfdx(x0, t0)))
    print(np.shape(dynamics_v2.get_dfdx(x0, t0)))