E = CellVariable(name="$E(t,x,y)$", mesh=mesh, value=0.0, hasOld=1) # -------------------- Homogeneous distribution of naive immune cells ------------------------------------------ S = CellVariable(mesh=mesh, value=0.0, hasOld=1) S.setValue(params.S / np.sum(mesK)) # -------------------- Heterogeneous distribution of naive immune cells ------------------------------------------ # center_x1 = 0.207 # center_x2 = 0.907 # Sh.setValue(params.S * numerix.exp(-(((xt - 0.) ** 2)/0.5 +((yt - 1.) ** 2))/0.125) + # params.S * numerix.exp(-(((xt - center_x1) ** 2)/0.25 +((yt + center_x2) ** 2))/0.125) + # params.S * numerix.exp(-(((xt + center_x1) ** 2)/0.25 +((yt + center_x2) ** 2))/0.125)) # Sh.setValue(Sh/numerix.sum(mesK*Sh)) delta = CellVariable(name="$\delta(x,y)$", mesh=mesh, value=0.) delta.setValue(delt.GaussianImmuneResponse2D(params.delta, xt, yt, Ra=0.02)) # pf = pF.GaussianConversionRate2D(amppf, xt, yt, mean=0, Rp=1.) pf = params.pf * np.ones(nVol) pfh = 0.0 * params.pf * np.ones(nVol) # gF = gammaF.gaussianGammaF2D(ampgF, xt, yt, Rs=0.3) gF = params.gf * np.ones(nVol) Id = sp.spdiags(numerix.ones(nVol), [0], nVol, nVol) # -------------------------Solutions representation ----------------------------------- # fig, axes = plt.subplots(1, 3) # cmap = plt.get_cmap("Spectral_r") # Tfigure = Matplotlib1DViewer(vars=T, axes=axes[0], datamin=0., datamax=10., figaspect='auto', cmap=cmap) # Efigure = Matplotlib2DViewer(vars=E, axes=axes[1], figaspect='auto', cmap=cmap) # Phifigure = MatplotlibStreamViewer(vars=phi.grad, axes=axes[2], figaspect='auto', cmap=cmap)
Id = sp.spdiags(numerix.ones(nVol), [0], nVol, nVol) # ---------------Variables and parameters for the Immune Cells Displacement equation--------- # E = CellVariable(name="$E(t,x,y)$", mesh=mesh, value=0.53235e6/c_s, hasOld=1) E = CellVariable(name="$E(t,x,y)$", mesh=mesh, value=0., hasOld=1) # S = CellVariable(mesh=mesh, value=0., hasOld=1) # # S.setValue(params.S / np.sum(mesK)) # S.setValue(Q) # S.updateOld() # delta = CellVariable(name="$\delta(x,y)$", mesh=mesh, value=0.) # delta.setValue(delt.GaussianImmuneResponse2D(params.delta, xt, yt, Ra=0.02)) delta_tild = CellVariable(name="$\delta_t(x,y)$", mesh=mesh, value=0.) delta_tild.setValue( delt.GaussianImmuneResponse2D(1. / x_s, xt, yt, Ra=0.02 / x_s**2)) # pf = pF.GaussianConversionRate2D(amppf, xt, yt, mean=0, Rp=1.) pf = params.pf * np.ones(nVol) # pfh = 0.0*params.pf * np.ones(nVol) # gF = gammaF.gaussianGammaF2D(ampgF, xt, yt, Rs=0.3) gF = params.gf * np.ones(nVol) Id = sp.spdiags(numerix.ones(nVol), [0], nVol, nVol) # -------------------------Solutions representation ----------------------------------- # fig, axes = plt.subplots(1, 3) # cmap = plt.get_cmap("Spectral_r") # Efigure = Matplotlib2DViewer(vars=E, axes=axes[1], figaspect='auto', cmap=cmap) # Phifigure = MatplotlibStreamViewer(vars=phi.grad, axes=axes[2], figaspect='auto', cmap=cmap) # axes[0].set_title('The Tumor $T$',fontsize=10, fontweight='bold')