def test_get_car_heading_error(self): params_test = get_test_params() params_test['heading'] = 0 params_test['waypoints'] = [(0, 0), (2, 0), (2, 2), (0, 2), (0, 0), (2, 2), (4, 0)] params_test['closest_waypoints'] = [0, 1] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_car_heading_error(), 0) params_test['closest_waypoints'] = [1, 2] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_car_heading_error(), 90) params_test['closest_waypoints'] = [2, 3] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_car_heading_error(), 180) params_test['closest_waypoints'] = [3, 4] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_car_heading_error(), -90) params_test['closest_waypoints'] = [4, 5] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_car_heading_error(), 45) params_test['closest_waypoints'] = [5, 6] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_car_heading_error(), -45)
def test_get_way_points_distance(self): params_test = get_test_params() rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_way_points_distance((0, 0), (2, 0)), 2) self.assertEqual(rf.get_way_points_distance((0, 0), (2, 2)), math.sqrt(8)) self.assertEqual(rf.get_way_points_distance((-2, 4), (-4, 2)), math.sqrt(8)) self.assertEqual(rf.get_way_points_distance((0, 0), (1, 0)), 1)
def test_get_heading_beetween_waypoints(self): params_test = get_test_params() rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_heading_between_waypoints((0, 0), (2, 0)), 0) self.assertEqual(rf.get_heading_between_waypoints((0, 0), (0, 2)), 90) self.assertEqual(rf.get_heading_between_waypoints((0, 0), (0, -2)), -90) self.assertEqual(rf.get_heading_between_waypoints((0, 0), (2, 2)), 45) self.assertEqual(rf.get_heading_between_waypoints((0, 0), (-2, -2)), -135)
def test_get_optimum_speed_ratio(self): params_test = get_test_params() params_test['heading'] = 0 params_test['distance_from_center'] = 0 params_test['steering_angle'] = 0 params_test['closest_waypoints'] = (0, 1) params_test['x'] = params_test['waypoints'][ params_test['closest_waypoints'][0]][0] params_test['y'] = params_test['waypoints'][ params_test['closest_waypoints'][0]][1] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_optimum_speed_ratio(), 1.0)
def test_get_waypoint(self): params_test = get_test_params() params_test['waypoints'] = [(0, 0), (1, 0), (2, 0), (3, 3)] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_way_point(0), (0, 0)) self.assertEqual(rf.get_way_point(1), (1, 0)) self.assertEqual(rf.get_way_point(2), (2, 0)) self.assertEqual(rf.get_way_point(3), (3, 3)) self.assertEqual(rf.get_way_point(4), (0, 0)) self.assertEqual(rf.get_way_point(5), (1, 0)) self.assertEqual(rf.get_way_point(-1), (3, 3)) self.assertEqual(rf.get_way_point(-2), (2, 0)) self.assertEqual(rf.get_way_point(-3), (1, 0))
def test_get_expected_turn_direction(self): params_test = get_test_params() params_test['heading'] = 0 params_test['waypoints'] = [(0, 0), (1, 0), (2, 0), (3, 1), (4, 1), (5, 1), (6, -6), (-1, -6), (-1, 0)] params_test['closest_waypoints'] = [0, 1] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_expected_turn_direction(), 'LEFT') params_test['closest_waypoints'] = [3, 4] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_expected_turn_direction(), 'RIGHT') params_test['closest_waypoints'] = [8, 0] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_expected_turn_direction(), 'STRAIGHT')
def test_get_turn_angle(self): params_test = get_test_params() params_test['heading'] = 0 params_test['waypoints'] = [(0, 0), (1, 0), (2, 0), (3, 1), (4, 1), (5, 1), (6, -6), (-1, -6), (-1, 0)] params_test['closest_waypoints'] = [0, 1] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_turn_angle(), 0) params_test['closest_waypoints'] = [1, 2] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_turn_angle(), 0) params_test['closest_waypoints'] = [2, 3] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_turn_angle(), 45) params_test['closest_waypoints'] = [5, 6] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.get_turn_angle(), -81.86989764584403)
def test_is_in_turn(self): params_test = get_test_params() params_test['heading'] = 0 params_test['waypoints'] = [(0, 0), (1, 0), (2, 0), (3, 1), (4, 1), (5, 1), (6, -6), (-1, -6), (-1, 0)] params_test['closest_waypoints'] = [0, 1] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.is_in_turn(), False) params_test['closest_waypoints'] = [1, 2] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.is_in_turn(), False) params_test['closest_waypoints'] = [2, 3] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.is_in_turn(), True) params_test['closest_waypoints'] = [5, 6] rf = AwsDeepRacerReward(params_test) self.assertEqual(rf.is_in_turn(), True)
import torch import params from lavse.data.loaders import get_loader from lavse.model import model from lavse.train.train import Trainer from lavse.utils import file_utils, helper from lavse.utils.logger import create_logger from run import load_yaml_opts, parse_loader_name from tqdm import tqdm if __name__ == '__main__': # mp.set_start_method('spawn') # loader_name = 'precomp' args = params.get_test_params() opt = load_yaml_opts(args.options) # init_distributed_mode(args)s logger = create_logger(level='debug' if opt.engine.debug else 'info') logger.info(f'Used args : \n{args}') logger.info(f'Used options: \n{opt}') if 'DATA_PATH' not in os.environ: data_path = opt.dataset.data_path else: data_path = os.environ['DATA_PATH'] ngpu = torch.cuda.device_count()
import torch import numpy as np from pathlib import Path from params import get_test_params from retrieval.train import evaluation from retrieval.data.loaders import get_loader from retrieval.utils.logger import create_logger from run import load_model, get_data_path, get_tokenizers from retrieval.utils.file_utils import save_json, load_yaml_opts, parse_loader_name if __name__ == '__main__': args = get_test_params(ensemble=True) opt = load_yaml_opts(args.options[0]) logger = create_logger(level='debug' if opt.engine.debug else 'info') logger.info(f'Used args : \n{args}') logger.info(f'Used options: \n{opt}') train_data = opt.dataset.train_data data_path = get_data_path(opt) data_name, lang = parse_loader_name(opt.dataset.train.data) loader = get_loader( data_split=args.data_split, data_path=data_path, data_info=opt.dataset.train.data, loader_name=opt.dataset.loader_name, local_rank=args.local_rank,