コード例 #1
0
ファイル: plot.py プロジェクト: tjlang/vad-plotter
def _plot_data(data, parameters):
    storm_dir, storm_spd = parameters['storm_motion']
    bl_dir, bl_spd = parameters['bunkers_left']
    br_dir, br_spd = parameters['bunkers_right']

    u, v = vec2comp(data['wind_dir'], data['wind_spd'])
    alt = data['altitude']

    storm_u, storm_v = vec2comp(storm_dir, storm_spd)
    bl_u, bl_v = vec2comp(bl_dir, bl_spd)
    br_u, br_v = vec2comp(br_dir, br_spd)

    seg_idxs = np.searchsorted(alt, _seg_hghts)
    seg_u = np.interp(_seg_hghts, alt, u, left=np.nan, right=np.nan)
    seg_v = np.interp(_seg_hghts, alt, v, left=np.nan, right=np.nan)
    ca_u = np.interp([0.5], alt, u, left=np.nan, right=np.nan)
    ca_v = np.interp([0.5], alt, v, left=np.nan, right=np.nan)

    for idx in xrange(len(_seg_hghts) - 1):
        idx_start = seg_idxs[idx]
        idx_end = seg_idxs[idx + 1]

        if not np.isnan(seg_u[idx]):
            pylab.plot([seg_u[idx], u[idx_start]], [seg_v[idx], v[idx_start]], '-', color=_seg_colors[idx], linewidth=1.5)

        if idx_start < len(data['rms_error']) and data['rms_error'][idx_start] == 0.:
            # The first segment is to the surface wind, draw it in a dashed line
            pylab.plot(u[idx_start:(idx_start + 2)], v[idx_start:(idx_start + 2)], '--', color=_seg_colors[idx], linewidth=1.5)
            pylab.plot(u[(idx_start + 1):idx_end], v[(idx_start + 1):idx_end], '-', color=_seg_colors[idx], linewidth=1.5)
        else:
            pylab.plot(u[idx_start:idx_end], v[idx_start:idx_end], '-', color=_seg_colors[idx], linewidth=1.5)

        if not np.isnan(seg_u[idx + 1]):
            pylab.plot([u[idx_end - 1], seg_u[idx + 1]], [v[idx_end - 1], seg_v[idx + 1]], '-', color=_seg_colors[idx], linewidth=1.5)

        for upt, vpt, rms in zip(u, v, data['rms_error'])[idx_start:idx_end]:
            rad = np.sqrt(2) * rms
            circ = Circle((upt, vpt), rad, color=_seg_colors[idx], alpha=0.05)
            pylab.gca().add_patch(circ)

    pylab.plot([storm_u, u[0], ca_u], [storm_v, v[0], ca_v], 'c-', linewidth=0.75)

    if not (np.isnan(bl_u) or np.isnan(bl_v)):
        pylab.plot(bl_u, bl_v, 'ko', markersize=5, mfc='none')
        pylab.text(bl_u + 0.5, bl_v - 0.5, "LM", ha='left', va='top', color='k', fontsize=10)

    if not (np.isnan(br_u) or np.isnan(br_v)):
        pylab.plot(br_u, br_v, 'ko', markersize=5, mfc='none')
        pylab.text(br_u + 0.5, br_v - 0.5, "RM", ha='left', va='top', color='k', fontsize=10)

    if not (np.isnan(storm_u) or np.isnan(storm_v)) and storm_u != bl_u and storm_v != bl_v and storm_u != br_u and storm_v != br_v:
        pylab.plot(storm_u, storm_v, 'k+', markersize=6)
        pylab.text(storm_u + 0.5, storm_v - 0.5, "SM", ha='left', va='top', color='k', fontsize=10)
コード例 #2
0
ファイル: plot.py プロジェクト: lcarlaw/vad-archive-plots
def _plot_vwp_data(data):
    ivals = [x * ((1 - x_start) / (len(data))) for x in range(0, len(data))]
    knt = 0
    for iline in ivals:
        u, v = vec2comp(data[knt]['wind_dir'], data[knt]['wind_spd'])
        alt = data[knt]['altitude']
        x = np.empty_like(alt)
        x.fill(iline)
        mpl.pyplot.barbs(x + x_start, (alt / max_alt) + 0.03,
                         u,
                         v,
                         data[knt]['wind_spd'],
                         length=6,
                         cmap=_vwp_cols,
                         clim=(_vwp_levs[0], _vwp_levs[-1]),
                         transform=pylab.gca().transAxes,
                         clip_on=True,
                         zorder=4,
                         linewidth=1.)
        # If the RMS exceeds _bad_rms, highlight with a red circle. Also, plot
        # the wind speeds as color-coded text next to the barbs
        for klev in range(0, len(data[knt]['wind_spd'])):
            rms = data[knt]['rms_error'][klev]
            x_loc = x[klev] + (x_start + 0.002)
            y_loc = (alt[klev] / max_alt) + 0.02
            if rms >= _bad_rms:
                ring = Circle((x_loc, y_loc + 0.01),
                              0.01,
                              linestyle='solid',
                              fc='none',
                              ec='red',
                              linewidth=2)
                pylab.gca().add_patch(ring)
            spd = data[knt]['wind_spd'][klev]
            text_spd = roundup(spd)
            spd_idx = np.where(text_spd > _vwp_levs)[0]
            if len(spd_idx) == 0:
                spd_idx = 0
            else:
                spd_idx = spd_idx[-1]
            spd_idx = np.clip(spd_idx, 0, len(_vwp_colors) - 1)
            pylab.text(x_loc,
                       y_loc,
                       str(int(spd)),
                       transform=pylab.gca().transAxes,
                       fontsize=9,
                       color=_vwp_colors[spd_idx],
                       va='bottom')
        knt += 1
コード例 #3
0
ファイル: plot.py プロジェクト: tjturnage/vad-plotter
def plot_hodograph(data,
                   parameters,
                   fname=None,
                   web=False,
                   fixed=False,
                   archive=False):
    img_title = "%s VWP valid %s" % (
        data.rid, data['time'].strftime("%d %b %Y %H%M UTC"))
    if fname is not None:
        img_file_name = fname
    else:
        img_file_name = "%s_vad.png" % data.rid

    u, v = vec2comp(data['wind_dir'], data['wind_spd'])

    sat_age = 6 * 3600
    if fixed or len(u) == 0:
        ctr_u, ctr_v = 20, 20
        size = 120
    else:
        ctr_u = u.mean()
        ctr_v = v.mean()
        size = max(u.max() - u.min(), v.max() - v.min()) + 20
        size = max(120, size)

    min_u = ctr_u - size / 2
    max_u = ctr_u + size / 2
    min_v = ctr_v - size / 2
    max_v = ctr_v + size / 2

    now = datetime.utcnow()
    img_age = now - data['time']
    age_cstop = min(_total_seconds(img_age) / sat_age, 1) * 0.4
    age_color = mpl.cm.get_cmap('hot')(age_cstop)[:-1]

    age_str = "Image created on %s (%s old)" % (
        now.strftime("%d %b %Y %H%M UTC"), _fmt_timedelta(img_age))

    pylab.figure(figsize=(10, 7.5), dpi=150)
    fig_wid, fig_hght = pylab.gcf().get_size_inches()
    fig_aspect = fig_wid / fig_hght

    axes_left = 0.05
    axes_bot = 0.05
    axes_hght = 0.9
    axes_wid = axes_hght / fig_aspect
    pylab.axes((axes_left, axes_bot, axes_wid, axes_hght))

    _plot_background(min_u, max_u, min_v, max_v)
    _plot_data(data, parameters)
    _plot_param_table(parameters, web=web)

    pylab.xlim(min_u, max_u)
    pylab.ylim(min_v, max_v)
    pylab.xticks([])
    pylab.yticks([])

    if not archive:
        pylab.title(img_title, color=age_color)
        pylab.text(0.,
                   -0.01,
                   age_str,
                   transform=pylab.gca().transAxes,
                   ha='left',
                   va='top',
                   fontsize=9,
                   color=age_color)
    else:
        pylab.title(img_title)

    if web:
        web_brand = "http://www.autumnsky.us/vad/"
        pylab.text(1.0,
                   -0.01,
                   web_brand,
                   transform=pylab.gca().transAxes,
                   ha='right',
                   va='top',
                   fontsize=9)

    pylab.savefig(img_file_name, dpi=pylab.gcf().dpi)
    pylab.close()

    if web:
        bounds = {
            'min_u': min_u,
            'max_u': max_u,
            'min_v': min_v,
            'max_v': max_v
        }
        print(json.dumps(bounds))
コード例 #4
0
ファイル: plot.py プロジェクト: tjturnage/vad-plotter
def _plot_data(data, parameters):
    storm_dir, storm_spd = parameters['storm_motion']
    bl_dir, bl_spd = parameters['bunkers_left']
    br_dir, br_spd = parameters['bunkers_right']
    mn_dir, mn_spd = parameters['mean_wind']

    u, v = vec2comp(data['wind_dir'], data['wind_spd'])
    alt = data['altitude']

    storm_u, storm_v = vec2comp(storm_dir, storm_spd)
    bl_u, bl_v = vec2comp(bl_dir, bl_spd)
    br_u, br_v = vec2comp(br_dir, br_spd)
    mn_u, mn_v = vec2comp(mn_dir, mn_spd)

    seg_idxs = np.searchsorted(alt, _seg_hghts)
    try:
        seg_u = np.interp(_seg_hghts, alt, u, left=np.nan, right=np.nan)
        seg_v = np.interp(_seg_hghts, alt, v, left=np.nan, right=np.nan)
        ca_u = np.interp(0.5, alt, u, left=np.nan, right=np.nan)
        ca_v = np.interp(0.5, alt, v, left=np.nan, right=np.nan)
    except ValueError:
        seg_u = np.nan * np.array(_seg_hghts)
        seg_v = np.nan * np.array(_seg_hghts)
        ca_u = np.nan
        ca_v = np.nan

    mkr_z = np.arange(16)
    mkr_u = np.interp(mkr_z, alt, u, left=np.nan, right=np.nan)
    mkr_v = np.interp(mkr_z, alt, v, left=np.nan, right=np.nan)

    for idx in range(len(_seg_hghts) - 1):
        idx_start = seg_idxs[idx]
        idx_end = seg_idxs[idx + 1]

        if not np.isnan(seg_u[idx]):
            pylab.plot([seg_u[idx], u[idx_start]], [seg_v[idx], v[idx_start]],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)

        if idx_start < len(
                data['rms_error']) and data['rms_error'][idx_start] == 0.:
            # The first segment is to the surface wind, draw it in a dashed line
            pylab.plot(u[idx_start:(idx_start + 2)],
                       v[idx_start:(idx_start + 2)],
                       '--',
                       color=_seg_colors[idx],
                       linewidth=1.5)
            pylab.plot(u[(idx_start + 1):idx_end],
                       v[(idx_start + 1):idx_end],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)
        else:
            pylab.plot(u[idx_start:idx_end],
                       v[idx_start:idx_end],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)

        if not np.isnan(seg_u[idx + 1]):
            pylab.plot([u[idx_end - 1], seg_u[idx + 1]],
                       [v[idx_end - 1], seg_v[idx + 1]],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)

        for upt, vpt, rms in list(zip(u, v,
                                      data['rms_error']))[idx_start:idx_end]:
            rad = np.sqrt(2) * rms
            circ = Circle((upt, vpt), rad, color=_seg_colors[idx], alpha=0.05)
            pylab.gca().add_patch(circ)

    pylab.plot(mkr_u, mkr_v, 'ko', ms=10)
    for um, vm, zm in zip(mkr_u, mkr_v, mkr_z):
        if not np.isnan(um):
            pylab.text(um,
                       vm - 0.1,
                       str(zm),
                       va='center',
                       ha='center',
                       color='white',
                       size=6.5,
                       fontweight='bold')

    try:
        pylab.plot([storm_u, u[0]], [storm_v, v[0]], 'c-', linewidth=0.75)
        pylab.plot([u[0], ca_u], [v[0], ca_v], 'm-', linewidth=0.75)
    except IndexError:
        pass

    if not (np.isnan(bl_u) or np.isnan(bl_v)):
        pylab.plot(bl_u, bl_v, 'ko', markersize=5, mfc='none')
        pylab.text(bl_u + 0.5,
                   bl_v - 0.5,
                   "LM",
                   ha='left',
                   va='top',
                   color='k',
                   fontsize=10)

    if not (np.isnan(br_u) or np.isnan(br_v)):
        pylab.plot(br_u, br_v, 'ko', markersize=5, mfc='none')
        pylab.text(br_u + 0.5,
                   br_v - 0.5,
                   "RM",
                   ha='left',
                   va='top',
                   color='k',
                   fontsize=10)

    if not (np.isnan(mn_u) or np.isnan(mn_v)):
        pylab.plot(mn_u, mn_v, 's', color='#a04000', markersize=5, mfc='none')
        pylab.text(mn_u + 0.6,
                   mn_v - 0.6,
                   "MEAN",
                   ha='left',
                   va='top',
                   color='#a04000',
                   fontsize=10)

    smv_is_brm = (storm_u == br_u and storm_v == br_v)
    smv_is_blm = (storm_u == bl_u and storm_v == bl_v)
    smv_is_mnw = (storm_u == mn_u and storm_v == mn_v)

    if not (np.isnan(storm_u) or np.isnan(storm_v)) and not (
            smv_is_brm or smv_is_blm or smv_is_mnw):
        pylab.plot(storm_u, storm_v, 'k+', markersize=6)
        pylab.text(storm_u + 0.5,
                   storm_v - 0.5,
                   "SM",
                   ha='left',
                   va='top',
                   color='k',
                   fontsize=10)
コード例 #5
0
def _plot_data(data, parameters):
    storm_dir, storm_spd = parameters['storm_motion']
    bl_dir, bl_spd = parameters['bunkers_left']
    br_dir, br_spd = parameters['bunkers_right']

    u, v = vec2comp(data['wind_dir'], data['wind_spd'])
    alt = data['altitude']

    storm_u, storm_v = vec2comp(storm_dir, storm_spd)
    bl_u, bl_v = vec2comp(bl_dir, bl_spd)
    br_u, br_v = vec2comp(br_dir, br_spd)

    seg_idxs = np.searchsorted(alt, _seg_hghts)
    seg_u = np.interp(_seg_hghts, alt, u, left=np.nan, right=np.nan)
    seg_v = np.interp(_seg_hghts, alt, v, left=np.nan, right=np.nan)
    ca_u = np.interp([0.5], alt, u, left=np.nan, right=np.nan)
    ca_v = np.interp([0.5], alt, v, left=np.nan, right=np.nan)

    for idx in xrange(len(_seg_hghts) - 1):
        idx_start = seg_idxs[idx]
        idx_end = seg_idxs[idx + 1]

        if not np.isnan(seg_u[idx]):
            pylab.plot([seg_u[idx], u[idx_start]], [seg_v[idx], v[idx_start]],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)

        if idx_start < len(
                data['rms_error']) and data['rms_error'][idx_start] == 0.:
            # The first segment is to the surface wind, draw it in a dashed line
            pylab.plot(u[idx_start:(idx_start + 2)],
                       v[idx_start:(idx_start + 2)],
                       '--',
                       color=_seg_colors[idx],
                       linewidth=1.5)
            pylab.plot(u[(idx_start + 1):idx_end],
                       v[(idx_start + 1):idx_end],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)
        else:
            pylab.plot(u[idx_start:idx_end],
                       v[idx_start:idx_end],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)

        if not np.isnan(seg_u[idx + 1]):
            pylab.plot([u[idx_end - 1], seg_u[idx + 1]],
                       [v[idx_end - 1], seg_v[idx + 1]],
                       '-',
                       color=_seg_colors[idx],
                       linewidth=1.5)

        for upt, vpt, rms in zip(u, v, data['rms_error'])[idx_start:idx_end]:
            rad = np.sqrt(2) * rms
            circ = Circle((upt, vpt), rad, color=_seg_colors[idx], alpha=0.05)
            pylab.gca().add_patch(circ)

    pylab.plot([storm_u, u[0], ca_u], [storm_v, v[0], ca_v],
               'c-',
               linewidth=0.75)

    if not (np.isnan(bl_u) or np.isnan(bl_v)):
        pylab.plot(bl_u, bl_v, 'ko', markersize=5, mfc='none')
        pylab.text(bl_u + 0.5,
                   bl_v - 0.5,
                   "LM",
                   ha='left',
                   va='top',
                   color='k',
                   fontsize=10)

    if not (np.isnan(br_u) or np.isnan(br_v)):
        pylab.plot(br_u, br_v, 'ko', markersize=5, mfc='none')
        pylab.text(br_u + 0.5,
                   br_v - 0.5,
                   "RM",
                   ha='left',
                   va='top',
                   color='k',
                   fontsize=10)

    if not (
            np.isnan(storm_u) or np.isnan(storm_v)
    ) and storm_u != bl_u and storm_v != bl_v and storm_u != br_u and storm_v != br_v:
        pylab.plot(storm_u, storm_v, 'k+', markersize=6)
        pylab.text(storm_u + 0.5,
                   storm_v - 0.5,
                   "SM",
                   ha='left',
                   va='top',
                   color='k',
                   fontsize=10)
コード例 #6
0
ファイル: plot.py プロジェクト: lcarlaw/vad-archive-plots
def plot_vwp(data,
             times,
             parameters,
             fname=None,
             add_hodo=False,
             fixed=False,
             web=False,
             archive=False):
    img_title = "%s VWP valid ending %s" % (
        data[0].rid, times[0].strftime("%d %b %Y %H%M UTC"))
    if fname is not None:
        img_file_name = fname
    else:
        img_file_name = "%s_vwp.png" % data[0].rid

    sat_age = 6 * 3600
    now = datetime.utcnow()
    img_age = now - times[0]
    age_cstop = min(_total_seconds(img_age) / sat_age, 1) * 0.4
    age_color = mpl.cm.get_cmap('hot')(age_cstop)[:-1]

    age_str = "Image created on %s (%s old)" % (
        now.strftime("%d %b %Y %H%M UTC"), _fmt_timedelta(img_age))

    fig_aspect = 2.5714
    fig_wid = 24
    fig_hght = fig_wid / fig_aspect
    pylab.figure(figsize=(fig_wid, fig_hght), dpi=200)

    axes_left = 0.01
    axes_bot = 0.02
    axes_hght = 0.94
    axes_wid = axes_hght / fig_aspect
    pylab.axes((axes_left, axes_bot, 0.99, axes_hght))

    _plot_vwp_background(times)
    _plot_vwp_data(data)
    #_plot_param_table(parameters, web=web)

    pylab.xlim(0, 1.)
    pylab.ylim(0, 1.)
    pylab.xticks([])
    pylab.yticks([])
    pylab.box(False)

    if not archive:
        pylab.title(img_title, color=age_color)
        pylab.text(x_start,
                   1.03,
                   age_str,
                   transform=pylab.gca().transAxes,
                   ha='left',
                   va='top',
                   fontsize=9,
                   color=age_color)
    else:
        pylab.title(img_title)

    if web:
        web_brand = "http://www.autumnsky.us/vad/"
        pylab.text(1.0,
                   -0.01,
                   web_brand,
                   transform=pylab.gca().transAxes,
                   ha='right',
                   va='top',
                   fontsize=9)

    if add_hodo:
        inset_ax = inset_axes(pylab.gca(),
                              width="30%",
                              height="55%",
                              loc='upper left',
                              bbox_to_anchor=(0.63, 0, 0.85, 1),
                              bbox_transform=pylab.gca().transAxes)
        u, v = vec2comp(data[0]['wind_dir'], data[0]['wind_spd'])

        if fixed or len(u) == 0:
            ctr_u, ctr_v = 20, 20
            size = 120
        else:
            ctr_u = u.mean()
            ctr_v = v.mean()
            size = max(u.max() - u.min(), v.max() - v.min()) + 20
            size = max(120, size)

        min_u = ctr_u - size / 2
        max_u = ctr_u + size / 2
        min_v = ctr_v - size / 2
        max_v = ctr_v + size / 2

        _plot_background(min_u, max_u, min_v, max_v)
        _plot_data(data[0], parameters)
        _plot_param_table(parameters, web=web)

        inset_ax.set_xlim(min_u, max_u)
        inset_ax.set_ylim(min_v, max_v)
        inset_ax.set_xticks([])
        inset_ax.set_yticks([])

    pylab.savefig(img_file_name, dpi=pylab.gcf().dpi)
    pylab.close()

    if web:
        bounds = {
            'min_u': min_u,
            'max_u': max_u,
            'min_v': min_v,
            'max_v': max_v
        }
        print(json.dumps(bounds))