コード例 #1
0
    def solve(self,
              ivp: InitialValueProblem,
              parallel_enabled: bool = True) -> Solution:
        cp = ivp.constrained_problem
        t = discretize_time_domain(ivp.t_interval, self._d_t)
        y = np.empty((len(t) - 1, ) + cp.y_vertices_shape)
        y_i = ivp.initial_condition.discrete_y_0(True)

        if not cp.are_all_boundary_conditions_static:
            init_boundary_constraints = cp.create_boundary_constraints(
                True, t[0])
            init_y_constraints = cp.create_y_vertex_constraints(
                init_boundary_constraints[0])
            apply_constraints_along_last_axis(init_y_constraints, y_i)

        y_constraints_cache: YConstraintsCache = {}
        boundary_constraints_cache: BoundaryConstraintsCache = {}
        y_next = self._create_y_next_function(ivp, y_constraints_cache,
                                              boundary_constraints_cache)

        for i, t_i in enumerate(t[:-1]):
            y[i] = y_i = y_next(t_i, y_i)
            if not cp.are_all_boundary_conditions_static:
                y_constraints_cache.clear()
                boundary_constraints_cache.clear()

        return Solution(ivp, t[1:], y, vertex_oriented=True, d_t=self._d_t)
コード例 #2
0
    def _create_discrete_y_0(self, vertex_oriented: bool) -> np.ndarray:
        """
        Creates the discretized initial values of y evaluated at the vertices
        or cell centers of the spatial mesh.

        :param vertex_oriented: whether the initial conditions are to be
            evaluated at the vertices or cell centers of the spatial mesh
        :return: the discretized initial values
        """
        diff_eq = self._cp.differential_equation
        if not diff_eq.x_dimension:
            y_0 = np.array(self._y_0_func(None))
            if y_0.shape != self._cp.y_shape():
                raise ValueError(
                    'expected initial condition function output shape to be '
                    f'{self._cp.y_shape()} but got {y_0.shape}')

            return y_0

        x = self._cp.mesh.all_index_coordinates(vertex_oriented, flatten=True)
        y_0 = self._y_0_func(x)
        if y_0.shape != (len(x), diff_eq.y_dimension):
            raise ValueError(
                'expected initial condition function output shape to be '
                f'{(len(x), diff_eq.y_dimension)} but got {y_0.shape}')

        y_0 = y_0.reshape(self._cp.y_shape(vertex_oriented))
        if vertex_oriented:
            apply_constraints_along_last_axis(
                self._cp.static_y_vertex_constraints, y_0)
        return y_0
コード例 #3
0
    def discrete_y(self,
                   vertex_oriented: Optional[bool] = None,
                   interpolation_method: str = 'linear') -> np.ndarray:
        """
        Returns the discrete solution evaluated either at vertices or the cell
        centers of the spatial mesh.

        :param vertex_oriented: whether the solution returned should be
            evaluated at the vertices or the cell centers of the spatial mesh;
            only interpolation is supported, therefore, it is not possible to
            evaluate the solution at the vertices based on a cell-oriented
            solution
        :param interpolation_method: the interpolation method to use
        :return: the discrete solution
        """
        if vertex_oriented is None:
            vertex_oriented = self._vertex_oriented

        cp = self._ivp.constrained_problem
        if not cp.differential_equation.x_dimension \
                or self._vertex_oriented == vertex_oriented:
            return np.copy(self._discrete_y)

        x = cp.mesh.all_index_coordinates(vertex_oriented)
        discrete_y = self.y(x, interpolation_method)
        if vertex_oriented:
            apply_constraints_along_last_axis(cp.static_y_vertex_constraints,
                                              discrete_y)
        return discrete_y
コード例 #4
0
    def __init__(
            self,
            cp: ConstrainedProblem,
            y_0: np.ndarray,
            vertex_oriented: Optional[bool] = None,
            interpolation_method: str = 'linear'):
        """
        :param cp: the constrained problem to turn into an initial value
            problem by providing the initial conditions for it
        :param y_0: the array containing the initial values of y over a spatial
            mesh (which may be 0 dimensional in case of an ODE)
        :param vertex_oriented: whether the initial conditions are evaluated at
            the vertices or cell centers of the spatial mesh; it the
            constrained problem is an ODE, it can be None
        :param interpolation_method: the interpolation method to use to
            calculate values that do not exactly fall on points of the y_0
            grid; if the constrained problem is based on an ODE, it can be None
        """
        if cp.differential_equation.x_dimension and vertex_oriented is None:
            raise ValueError('vertex orientation must be defined for PDEs')
        if y_0.shape != cp.y_shape(vertex_oriented):
            raise ValueError(
                f'discrete initial value shape {y_0.shape} must match '
                'constrained problem solution shape '
                f'{cp.y_shape(vertex_oriented)}')

        self._cp = cp
        self._y_0 = np.copy(y_0)
        self._vertex_oriented = vertex_oriented
        self._interpolation_method = interpolation_method

        if vertex_oriented:
            apply_constraints_along_last_axis(
                cp.static_y_vertex_constraints, self._y_0)
コード例 #5
0
    def integral(
            self,
            y: np.ndarray,
            t: float,
            d_t: float,
            d_y_over_d_t: Callable[[float, np.ndarray], np.ndarray],
            y_constraint_function: Callable[
                [Optional[float]],
                Optional[Union[Sequence[Constraint], np.ndarray]]
            ]) -> np.ndarray:
        half_d_t = d_t / 2.
        y_half_next_constraints = y_constraint_function(t + half_d_t)
        y_next_constraints = y_constraint_function(t + d_t)

        k1 = d_t * d_y_over_d_t(t, y)
        k2 = d_t * d_y_over_d_t(
            t + half_d_t,
            apply_constraints_along_last_axis(
                y_half_next_constraints,
                y + k1 / 2.))
        k3 = d_t * d_y_over_d_t(
            t + half_d_t,
            apply_constraints_along_last_axis(
                y_half_next_constraints,
                y + k2 / 2.))
        k4 = d_t * d_y_over_d_t(
            t + d_t,
            apply_constraints_along_last_axis(
                y_next_constraints,
                y + k3))
        return apply_constraints_along_last_axis(
            y_next_constraints,
            y + (k1 + 2. * k2 + 2. * k3 + k4) / 6.)
コード例 #6
0
ファイル: test_constraint.py プロジェクト: ViktorC/PararealML
def test_apply_constraints_along_last_axis_with_one_dimensional_array():
    constraints = [
        create_4_by_1_test_constraint(), create_4_by_1_test_constraint()
    ]

    array = np.zeros(1)

    with pytest.raises(ValueError):
        apply_constraints_along_last_axis(constraints, array)
コード例 #7
0
ファイル: test_constraint.py プロジェクト: ViktorC/PararealML
def test_apply_constraints_along_last_axis_with_wrong_last_array_axis_size():
    constraints = [
        create_4_by_1_test_constraint(), create_4_by_1_test_constraint()
    ]

    array = np.zeros((3, 3, 1))

    with pytest.raises(ValueError):
        apply_constraints_along_last_axis(constraints, array)
コード例 #8
0
    def anti_laplacian(self,
                       laplacian: np.ndarray,
                       mesh: Mesh,
                       y_constraints: Union[Sequence[Optional[Constraint]],
                                            np.ndarray],
                       derivative_boundary_constraints: Optional[
                           np.ndarray] = None,
                       y_init: Optional[np.ndarray] = None) -> np.ndarray:
        """
        Computes the inverse of the element-wise scalar Laplacian using the
        Jacobi method.

        :param laplacian: the right-hand side of the equation
        :param mesh: the mesh representing the discretized spatial domain
        :param y_constraints: a sequence of constraints on the values of the
            solution containing a constraint for each element of y; each
            constraint must constrain the boundary values of corresponding
            element of y for the system to be solvable
        :param derivative_boundary_constraints: an optional 2D array
            (x dimension, y dimension) of boundary constraint pairs that
            specify constraints on the first derivatives of the solution
        :param y_init: an optional initial estimate of the solution; if it is
            None, a random array is used
        :return: the array representing the solution to Poisson's equation at
            every point of the mesh
        """
        self._verify_input_shape_matches_mesh(laplacian, mesh, 'Laplacian')

        derivative_boundary_constraints = \
            self._verify_and_get_derivative_boundary_constraints(
                derivative_boundary_constraints,
                mesh.dimensions,
                laplacian.shape[-1])

        if y_init is None:
            y = np.random.random(laplacian.shape)
        else:
            if y_init.shape != laplacian.shape:
                raise ValueError
            y = y_init

        apply_constraints_along_last_axis(y_constraints, y)

        diff = np.inf
        while diff > self._tol:
            y_old = y
            y = self._next_anti_laplacian_estimate(
                y_old, laplacian, mesh, derivative_boundary_constraints)
            apply_constraints_along_last_axis(y_constraints, y)

            diff = float(np.linalg.norm(y - y_old))

        return y
コード例 #9
0
ファイル: test_constraint.py プロジェクト: ViktorC/PararealML
def test_apply_constraints_along_last_axis():
    constraints = [
        create_4_by_1_test_constraint(), create_4_by_1_test_constraint()
    ]

    array = np.zeros((1, 4, 2))
    expected_array = [[
        [1., 1.],
        [0., 0.],
        [3., 3.],
        [0., 0.]
    ]]
    apply_constraints_along_last_axis(constraints, array)
    assert np.array_equal(array, expected_array)
コード例 #10
0
    def discrete_y_0(
            self,
            vertex_oriented: Optional[bool] = None) -> np.ndarray:
        if vertex_oriented is None:
            vertex_oriented = self._vertex_oriented

        if not self._cp.differential_equation.x_dimension \
                or vertex_oriented == self._vertex_oriented:
            return np.copy(self._y_0)

        y_0 = self.y_0(self._cp.mesh.all_index_coordinates(vertex_oriented))
        if vertex_oriented:
            apply_constraints_along_last_axis(
                self._cp.static_y_vertex_constraints, y_0)
        return y_0
コード例 #11
0
        def y_next_function(t: float, y: np.ndarray) -> np.ndarray:
            y_next = self._integrator.integral(y, t, self._d_t,
                                               d_y_over_d_t_function,
                                               y_constraint_func)

            if len(y_eq_indices):
                y_constraint = y_constraint_func(t + self._d_t)
                y_constraint = None if y_constraint is None \
                    else y_constraint[y_eq_indices]
                y_rhs = symbol_mapper.map_concatenated(
                    FDMSymbolMapArg(t, y, d_y_constraint_func), Lhs.Y)
                y_next[..., y_eq_indices] = \
                    apply_constraints_along_last_axis(y_constraint, y_rhs)

            if len(y_laplacian_eq_indices):
                y_constraint = y_constraint_func(t + self._d_t)
                y_constraint = None if y_constraint is None \
                    else y_constraint[y_laplacian_eq_indices]
                d_y_constraint = d_y_constraint_func(t + self._d_t)
                d_y_constraint = None if d_y_constraint is None \
                    else d_y_constraint[:, y_laplacian_eq_indices]
                y_laplacian_rhs = symbol_mapper.map_concatenated(
                    FDMSymbolMapArg(t, y, d_y_constraint_func),
                    Lhs.Y_LAPLACIAN)
                y_next[..., y_laplacian_eq_indices] = \
                    self._differentiator.anti_laplacian(
                        y_laplacian_rhs,
                        cp.mesh,
                        y_constraint,
                        d_y_constraint)

            return y_next
コード例 #12
0
    def integral(
            self,
            y: np.ndarray,
            t: float,
            d_t: float,
            d_y_over_d_t: Callable[[float, np.ndarray], np.ndarray],
            y_constraint_function: Callable[
                [Optional[float]],
                Optional[Union[Sequence[Constraint], np.ndarray]]
            ]) -> np.ndarray:
        half_d_t = d_t / 2.
        y_half_next_constraints = y_constraint_function(t + half_d_t)
        y_next_constraints = y_constraint_function(t + d_t)

        y_hat = apply_constraints_along_last_axis(
            y_half_next_constraints,
            y + half_d_t * d_y_over_d_t(t, y))
        return apply_constraints_along_last_axis(
            y_next_constraints,
            y + d_t * d_y_over_d_t(t + half_d_t, y_hat))
コード例 #13
0
    def integral(
            self,
            y: np.ndarray,
            t: float,
            d_t: float,
            d_y_over_d_t: Callable[[float, np.ndarray], np.ndarray],
            y_constraint_function: Callable[
                [Optional[float]],
                Optional[Union[Sequence[Constraint], np.ndarray]]
            ]) -> np.ndarray:
        t_next = t + d_t
        y_next_constraints = y_constraint_function(t_next)
        y_next_init = apply_constraints_along_last_axis(
            y_next_constraints,
            y + d_t * d_y_over_d_t(t, y))

        def y_next_residual_function(y_next: np.ndarray) -> np.ndarray:
            return y_next - apply_constraints_along_last_axis(
                y_next_constraints,
                y + d_t * d_y_over_d_t(t_next, y_next))

        return self._solve(y_next_residual_function, y_next_init)
コード例 #14
0
def test_cp_2d_pde():
    diff_eq = WaveEquation(2)
    mesh = Mesh([(2., 6.), (-3., 3.)], [.1, .2])
    bcs = ((DirichletBoundaryCondition(
        vectorize_bc_function(lambda x, t: (999., None)), is_static=True),
            NeumannBoundaryCondition(
                vectorize_bc_function(lambda x, t: (100., -100.)),
                is_static=True)),
           (NeumannBoundaryCondition(
               vectorize_bc_function(lambda x, t: (-x[0], None)),
               is_static=True),
            DirichletBoundaryCondition(
                vectorize_bc_function(lambda x, t: (x[0], x[1])),
                is_static=True)))
    cp = ConstrainedProblem(diff_eq, mesh, bcs)

    assert cp.are_all_boundary_conditions_static
    assert cp.are_there_boundary_conditions_on_y

    y_vertices = np.full(cp.y_shape(True), 13.)
    apply_constraints_along_last_axis(cp.static_y_vertex_constraints,
                                      y_vertices)

    assert np.all(y_vertices[0, :-1, 0] == 999.)
    assert np.all(y_vertices[0, :-1, 1] == 13.)
    assert np.all(y_vertices[-1, :-1, :] == 13.)
    assert np.all(y_vertices[1:, 0, :] == 13.)
    assert np.allclose(y_vertices[:, -1, 0],
                       np.linspace(2., 6., y_vertices.shape[0]))
    assert np.all(y_vertices[:, -1, 1] == 3.)

    y_vertices = np.zeros(cp.y_shape(True))
    diff = ThreePointCentralDifferenceMethod()
    d_y_boundary_constraints = cp.static_boundary_vertex_constraints[1]

    d_y_0_over_d_x_0 = diff.gradient(y_vertices[..., :1], mesh, 0,
                                     d_y_boundary_constraints[:, :1])

    assert np.all(d_y_0_over_d_x_0[-1, :, :] == 100.)
    assert np.all(d_y_0_over_d_x_0[:-1, :, :] == 0.)

    d_y_0_over_d_x_1 = diff.gradient(y_vertices[..., :1], mesh, 1,
                                     d_y_boundary_constraints[:, :1])

    assert np.allclose(d_y_0_over_d_x_1[:, 0, 0],
                       np.linspace(-2., -6., y_vertices.shape[0]))
    assert np.all(d_y_0_over_d_x_1[:, 1:, :] == 0.)

    d_y_1_over_d_x_0 = diff.gradient(y_vertices[..., 1:], mesh, 0,
                                     d_y_boundary_constraints[:, 1:])

    assert np.all(d_y_1_over_d_x_0[-1, :, :] == -100.)
    assert np.all(d_y_1_over_d_x_0[:-1, :, :] == 0.)

    d_y_1_over_d_x_1 = diff.gradient(y_vertices[..., 1:], mesh, 1,
                                     d_y_boundary_constraints[:, 1:])

    assert np.all(d_y_1_over_d_x_1 == 0.)

    y_boundary_cell_constraints = cp.static_boundary_cell_constraints[0]

    assert np.all(y_boundary_cell_constraints[0, 0][0].mask == [True] *
                  cp.y_cells_shape[1])
    assert np.all(y_boundary_cell_constraints[0, 0][0].values == 999.)
    assert np.all(y_boundary_cell_constraints[0, 1][0].mask == [False] *
                  cp.y_cells_shape[1])
    assert y_boundary_cell_constraints[0, 1][0].values.size == 0

    assert np.all(y_boundary_cell_constraints[1, 0][1].mask == [True] *
                  cp.y_cells_shape[0])
    assert np.allclose(y_boundary_cell_constraints[1, 0][1].values,
                       np.linspace(2.05, 5.95, cp.y_cells_shape[0]))
    assert np.all(y_boundary_cell_constraints[1, 1][1].mask == [True] *
                  cp.y_cells_shape[0])
    assert np.all(y_boundary_cell_constraints[1, 1][1].values == 3.)
    assert y_boundary_cell_constraints[1, 0][0] is None
コード例 #15
0
 def y_next_residual_function(y_next: np.ndarray) -> np.ndarray:
     return y_next - apply_constraints_along_last_axis(
         y_next_constraints,
         y +
         self._a * d_t * d_y_over_d_t(t_next, y_next) +
         self._b * forward_update)
コード例 #16
0
 def y_next_residual_function(y_next: np.ndarray) -> np.ndarray:
     return y_next - apply_constraints_along_last_axis(
         y_next_constraints,
         y + d_t * d_y_over_d_t(t_next, y_next))