def dictToExperiment(cls, experiment_dict): """Returns dict as Experiment Args: experiment_dict(dict): dictionary representation of Experiment Returns: experiment(Experiment): constructed Experiment """ experiment_params = [Parameter(**param) for param in experiment_dict.pop('parameters')] if in_production: compute = EC2Compute(**experiment_dict.pop('compute')) else: compute = LocalCompute(**experiment_dict.pop('compute')) return Experiment(parameters=experiment_params, compute=compute, **experiment_dict)
def dictToExperiment(experiment_dict): """Returns dict as Experiment Args: experiment_dict(dict): dictionary representation of Experiment Returns: experiment(Experiment): constructed Experiment """ experiment_params = [ Parameter(**param) for param in experiment_dict.pop('parameters') ] compute_type = experiment_dict['compute']['type'] if compute_type == 'ec2': compute = EC2Compute(**experiment_dict.pop('compute')) elif compute_type == 'local': compute = LocalCompute(**experiment_dict.pop('compute')) elif compute_type == 'PBSPro': compute = PBSProCompute(**experiment_dict.pop('compute')) return Experiment(parameters=experiment_params, compute=compute, **experiment_dict)
maximum=5), Parameter(name="myParamC", type=PARAMETER_TYPE_INT, minimum=3, maximum=5) ] # define compute type # run on PBS PBS_compute = PBSProCompute( cpus_per_node=1, walltime='1:00:00', scheduler_options= '#PBS -P 11001079\n#PBS -l select=1:mem=1G\n#PBS -N PBSPro_paraopt_test', worker_init='module load openmpi\nsource activate paropt') # run on AWS (need a server to run paraopt_service, and submit experiment via paropat_sdk) AWS_compute = EC2Compute(instance_family='c5', instance_model='c5.2xlarge', ami='XXXXXXX') # run locally LOCAL_compute = LocalCompute(max_threads=8) # define experiment entity experiment_inst = Experiment(tool_name='test_script', parameters=parameters, command_template_string=command_template_string, setup_template_string=setup_template_string, finish_template_string=finish_template_string, compute=LOCAL_compute) # define the storage # when run on the server, this doesn't change - we always connect to an AWS RDS postgres database
def setupAWS(): # launch a small parsl job on AWS to initialize parsl's AWS VPC stuff # If run successfully, it will create the awsproviderstate.json file on host in paropt-service/config/ # Needs to be run each time the AWS credentials are changed for the server # Intended to be used with a `docker run ...` command before running production server import os import paropt from paropt.runner import ParslRunner from paropt.storage import RelationalDB from paropt.optimizer import BayesianOptimizer, GridSearch from paropt.runner.parsl import timeCommand from paropt.storage.entities import Parameter, PARAMETER_TYPE_INT, Experiment, LocalCompute, EC2Compute container_state_file_dir = os.getenv("CONTAINER_STATE_FILE_DIR") if not container_state_file_dir: raise Exception( "Missing required env var CONTAINER_STATE_FILE_DIR which is used for copying awsproviderstate.json to host" ) paropt.setConsoleLogger() command_template_string = """ #! /bin/bash sleep ${myParam} """ experiment_inst = Experiment( tool_name='tmptool', parameters=[ Parameter(name="myParam", type=PARAMETER_TYPE_INT, minimum=0, maximum=10), ], command_template_string=command_template_string, compute=EC2Compute( type='ec2', instance_model= "c4.large", # using c5 b/c previously had trouble with t2 spot instances instance_family="c4", ami= "ami-0257427d05c8c18ac" # parsl base ami - preinstalled apt packages )) # use an ephemeral database storage = RelationalDB( 'sqlite', '', '', '', 'tmpSqliteDB', ) # run simple bayes opt bayesian_optimizer = BayesianOptimizer( n_init=1, n_iter=1, ) po = ParslRunner(parsl_app=timeCommand, optimizer=bayesian_optimizer, storage=storage, experiment=experiment_inst, logs_root_dir='/var/log/paropt') po.run(debug=True) po.cleanup() # print result print(po.run_result) # move the awsproviderstate file into expected directory from shutil import copyfile copyfile("awsproviderstate.json", f'{container_state_file_dir}/awsproviderstate.json')