def setExperiment(self, experiment): parameters = Parameter.parametersToDict(experiment.parameters) parameters_linearly_spaced_vals = [] # parameter start from the lower bound to higher bound for idx, parameter in enumerate(experiment.parameters): ncpp = self.num_configs_per_param[idx] # step_size = (parameter.maximum - parameter.minimum) / (ncpp - 1) if ncpp == 1: step_size = 0 else: step_size = (parameter.maximum - parameter.minimum) / (ncpp - 1) parameter_linearly_spaced_vals = [ parameter.minimum + (i * step_size) for i in range(ncpp) ] parameter_linearly_spaced_vals = reversed( parameter_linearly_spaced_vals) parameters_linearly_spaced_vals.append( parameter_linearly_spaced_vals) # get cartesian product of configs parameter_configs_product = itertools.product( *parameters_linearly_spaced_vals) # create collections of ParameterConfigs from config values for parameter_config_collection in parameter_configs_product: parameter_configs = [] for parameter, value in zip(experiment.parameters, parameter_config_collection): parameter_configs.append( ParameterConfig(parameter=parameter, value=value)) self.grid_parameter_configs.append(parameter_configs)
def _configDictToParameterConfigs(self, config_dict): """ Given a dictionary of parameters configurations, keyed by parameter name, value is value, return an array of ParameterConfigs """ parameter_configs = [] for name, value in config_dict.items(): param = self.parameters_by_name.get(name, None) if param == None: raise Exception('Parameter with name "{}" not found in optimizer'.format(name)) # TODO: This should return ParameterConfig values with the proper type (e.g. int, float) parameter_configs.append(ParameterConfig(parameter=param, value=value)) return parameter_configs
def setExperiment(self, experiment): parameters = Parameter.parametersToDict(experiment.parameters) ncpp = self.num_configs_per_param parameters_linearly_spaced_vals = [] for parameter in experiment.parameters: step_size = (parameter.maximum - parameter.minimum) / (ncpp - 1) parameter_linearly_spaced_vals = [ parameter.minimum + (i * step_size) for i in range(ncpp) ] parameters_linearly_spaced_vals.append( parameter_linearly_spaced_vals) # get cartesian product of configs parameter_configs_product = itertools.product( *parameters_linearly_spaced_vals) # create collections of ParameterConfigs from config values for parameter_config_collection in parameter_configs_product: parameter_configs = [] for parameter, value in zip(experiment.parameters, parameter_config_collection): parameter_configs.append( ParameterConfig(parameter=parameter, value=value)) self.grid_parameter_configs.append(parameter_configs)
def run(self, debug=False): """ Run trials provided by the optimizer while saving results. """ if debug: parsl.set_stream_logger() self._dfk = parsl.load(self.parsl_config) logger.info(f'Starting ParslRunner with config\n{self}') flag = True initialize_flag = True result = None for idx, parameter_configs in enumerate(self.optimizer): try: logger.info( f'Writing script with configs {parameter_configs}\n') # command_script_path, command_script_content = self._writeScript(self.command, parameter_configs, 'command') # if self.experiment.setup_template_string != None: # _, setup_script_content = self._writeScript(self.experiment.setup_template_string, parameter_configs, 'setup') # else: # setup_script_content = None # if self.experiment.finish_template_string != None: # _, finish_script_content = self._writeScript(self.experiment.finish_template_string, parameter_configs, 'finish') # else: # finish_script_content = None setup_script_content, command_script_path, command_script_content, finish_script_content = self._createScript( self.experiment.setup_template_string, self.command, self.experiment.finish_template_string, parameter_configs) # set warm-up experiments if initialize_flag: initialize_flag = False logger.info( f'[Initial trial for warm-up] Starting trial with script at {command_script_path}\n' ) runConfig = paropt.runner.RunConfig( command_script_content=command_script_content, experiment_dict=self.experiment.asdict(), setup_script_content=setup_script_content, finish_script_content=finish_script_content, ) initializing_func_param = {} for key, val in self.obj_func_params.items(): initializing_func_param[key] = val initializing_func_param['timeout'] = 300 # result = self.obj_func(runConfig, **self.obj_func_params).result() result = self.obj_func(runConfig, **initializing_func_param).result() # run baseline experiment if (self.baseline) and (self.get_baseline_output is False): self.baseline = False logger.info(f'Creating baseline trial') baseline_parameter_configs = [] for parameter in self.baseline_experiment.parameters: baseline_parameter_configs.append( ParameterConfig(parameter=parameter, value=parameter.minimum)) baseline_setup_script_content, baseline_command_script_path, baseline_command_script_content, baseline_finish_script_content = self._createScript( self.experiment.setup_template_string, self.baseline_command, self.experiment.finish_template_string, baseline_parameter_configs) logger.info( f'Starting baseline trial with script at {baseline_command_script_path}\n' ) runConfig = paropt.runner.RunConfig( command_script_content=baseline_command_script_content, experiment_dict=self.baseline_experiment.asdict(), setup_script_content=baseline_setup_script_content, finish_script_content=baseline_finish_script_content, ) result = None result = self.obj_func(runConfig, **self.obj_func_params).result() self._validateResult(baseline_parameter_configs, result) result['obj_parameters']['wrt_baseline'] = 1 self.baseline_obj_output = result['obj_output'] trial = Trial( outcome=result['obj_output'], parameter_configs=baseline_parameter_configs, run_number=self.run_number, experiment_id=self.experiment.id, obj_parameters=result['obj_parameters'], ) self.storage.saveResult(self.session, trial) self.baseline_time = result['obj_parameters'][ 'caller_time'] self.get_baseline_output = True if 'baseline_time' in self.obj_func_params.keys( ) and self.obj_func_params[ 'baseline_time'] is None and self.baseline_time is not None: self.obj_func_params['baseline_time'] = self.baseline_time # start normal trials logger.info( f'Starting trial with script at {command_script_path}\n') runConfig = paropt.runner.RunConfig( command_script_content=command_script_content, experiment_dict=self.experiment.asdict(), setup_script_content=setup_script_content, finish_script_content=finish_script_content, ) result = None result = self.obj_func(runConfig, **self.obj_func_params).result() print(result) self._validateResult(parameter_configs, result) if self.get_baseline_output: result['obj_parameters']['wrt_baseline'] = result[ 'obj_output'] / self.baseline_obj_output trial = Trial( outcome=result['obj_output'], parameter_configs=parameter_configs, run_number=self.run_number, experiment_id=self.experiment.id, obj_parameters=result['obj_parameters'], ) self.storage.saveResult(self.session, trial) self.optimizer.register(trial) self.run_result[ 'success'] = True and self.run_result['success'] flag = flag and self.run_result['success'] self.run_result['message'][ f'experiment {self.experiment.id} run {self.run_number}, config is {ParameterConfig.configsToDict(parameter_configs)}'] = ( f'Successfully completed trials {idx} for experiment, output is {result}' ) except Exception as e: err_traceback = traceback.format_exc() print(result) if result is not None and result[ 'stdout'] == 'Timeout': # for timeCommandLimitTime in lib, timeout if self.get_baseline_output: result['obj_parameters']['wrt_baseline'] = result[ 'obj_output'] / self.baseline_obj_output trial = Trial( outcome=result['obj_output'], parameter_configs=parameter_configs, run_number=self.run_number, experiment_id=self.experiment.id, obj_parameters=result['obj_parameters'], ) self.optimizer.register(trial) logger.exception(f'time out\n') self.storage.saveResult(self.session, trial) self.run_result['success'] = False self.run_result['message'][ f'experiment {self.experiment.id} run {self.run_number}, config is {parameter_configs}'] = ( f'Failed to complete trials {idx} due to timeout:\nError: {e};\t{err_traceback};\toutput is {result}' ) else: # do have error trial = Trial( outcome=10000000, parameter_configs=parameter_configs, run_number=self.run_number, experiment_id=self.experiment.id, obj_parameters={}, ) if self.save_fail_trial: self.storage.saveResult(self.session, trial) self.run_result['success'] = False self.run_result['message'][ f'experiment {self.experiment.id} run {self.run_number}, config is {parameter_configs}'] = ( f'Failed to complete trials {idx}:\nError: {e};\t{err_traceback};\toutput is {result}' ) print(err_traceback) print(result) logger.info(f'Finished; Run result: {self.run_result}\n') # plot part if self.plot_info['draw_plot']: try: trials = self.storage.getTrials(self.session, self.experiment.id) trials_dicts = [trial.asdict() for trial in trials] except: self.session.rollback() raise logger.info(f'res: {trials_dicts}\n') if isinstance(self.optimizer, GridSearch): ret = GridSearch_plot(trials_dicts, self.plot_info) else: logger.info(f'Unsupport type of optimizer for plot\n') if ret['success'] == False: logger.info(f'Error when generating plot: {ret["error"]}\n') else: logger.info(f'Successfully generating plot {ret["error"]}\n') else: logger.info(f'Skip generating plot\n')